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Background. Little is known about the health risks of air pollution and
cardiorespiratory diseases, globally, across regions and populations,
which may differ because of external factors.

Objectives. We systematically reviewed the evidence on the association
between air pollution and cardiorespiratory diseases (hospital admissions
and mortality), including variability by energy, transportation, socio-
economic status, and air quality.

SearchMethods. Weconducted a literature search (PubMed andWebof
Science) for studies published between 2006 and May 11, 2016.

Selection Criteria. We included studies if they met all of the following
criteria: (1) considered at least 1 of these air pollutants: carbonmonoxide,
sulfur dioxide, nitrogen dioxide, ozone, or particulate matter (PM2.5 or
PM10); (2) reported risk for hospital admissions, mortality, or both; (3)
presented individual results for respiratory diseases, cardiovascular
diseases, or both; (4) considered the age groups younger than 5 years,
older than 65 years, or all ages; and (5) did not segregate the analysis by
gender.

Data Collection and Analysis. We extracted data from each study, in-
cluding location, health outcome, and risk estimates. We performed
a meta-analysis to estimate the overall effect and to account for both
within- and between-study heterogeneity. Then, we applied a model

selection (least absolute shrinkage and selection operator) to assess the
modifier variables, and, lastly, we performed meta-regression analyses to
evaluate themodifier variables contributing to heterogeneity among studies.

Main Results. We assessed 2183 studies, of which we selected 529 for
in-depth review, and 70 articles fulfilled our study inclusion criteria. The 70
studies selected formeta-analysis encompassmore than 30million events
across 28 countries. We found positive associations between cardiore-
spiratory diseases and different air pollutants. For example, when we
considered only the association between PM2.5 and respiratory diseases
(Figure 1, we observed a risk equal to 2.7% (95% confidence inter-
val = 0.9%, 7.7%). Our results showed statistical significance in the test of
moderators for all pollutants, suggesting that the modifier variables in-
fluence the average cardiorespiratory disease risk and may explain the
varying effects of air pollution.

Conclusions. Variables related to aspects of energy, transportation, and
socioeconomic status may explain the varying effect size of the associ-
ation between air pollution and cardiorespiratory diseases.

Public Health Implications. Our study provides a transferable model to
estimate the health effects of air pollutants to support the creation of
environmental health public policies for national and international in-
tervention. (Am J Public Health. 2018;108:S123–S130. doi:10.2105/
AJPH.2017.303839)

PLAIN-LANGUAGE SUMMARY
We assessed the global association of air

pollution and cardiorespiratory diseases by
summarizing the available evidence from the
literature, and investigated whether variables
representing different aspects of energy,
transportation, and socioeconomic factors
could explain the varying effects of this asso-
ciation. Our results showed that clean

electricity production, consumption of bio-
fuels, and urban population account for 69% of
the heterogeneity of the exposure to partic-
ulate matter of 2.5 micrometers or less (PM2.5;
hospital admissions). For mortality attributable
to PM2.5 exposure, clean electricity, con-
sumption of motor gasoline, consumption of
cooking fuel, population density, and educa-
tion accounted for 64% of the heterogeneity.
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FIGURE 1—Global Association Between Air
Pollution (Fine Particulate Matter £2.5 mm)
and Health
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Cardiorespiratory diseases are an escalating
public health issue worldwide.1,2 The

World Health Organization (WHO) esti-
mates that in 2012 cardiovascular and re-
spiratory diseases were responsible for 17.5
million and 4 million deaths globally, re-
spectively.3 Extensive evidence indicates that
environmental factors are associated with
several adverse health effects, including car-
diorespiratory disease risk.4–8

Air pollution is a major environmental
health risk. In 2012, 7 million deaths all-cause
and all-age worldwide were linked to am-
bient air pollution.9 Particulate matter of
2.5 micrometers or less (PM2.5) contributes to
approximately 2million premature deaths per
year, ranking it as the 13th leading cause of
worldwide mortality.10 The WHO estimates
that 80% of outdoor air pollution–related
premature deaths are associated with ischemic
heart disease and strokes, 14% with chronic
obstructive pulmonary disease and acute
lower respiratory infections, and 6% with
lung cancer.11 Even low levels of air pollut-
ants have been associated with increases in
cardiorespiratory diseases.12

Governments andhealth organizations have
implemented regulations to reduce air pollu-
tion levels to protect human health.13–16 The
WHO assessed air pollution data from more
than 3000 cities worldwide and found that half
of the cities in high-income countries and one
third of those in low- and middle-income
countries reduced air pollution levels by more
than 5% between 2011 and 2016. All of these
cities have addressed air pollution with the
implementation of policies in sectors such as
transport, energy, or urban planning.17 For
example, efforts taken by cities include prior-
itizing rapid urban transit and fuels with re-
duced emissions,6,18,19 use of renewable energy
sources,16 and land use management.20,21

Although several studies have examined
the relationship between air pollution and
cardiorespiratory diseases, less is known about
the health risks across regions and populations
from a global perspective. Varying health
responses across individuals may be influ-
enced by external factors, such as socioeco-
nomic status and air pollution sources (e.g.,
transportation, energy generation). These
factors are also called effect modifiers of the
air pollution–health relationship.22 Un-
derstanding the global health risk can provide
the knowledge for implementing regulations

and improving urban air quality. Therefore,
we systematically reviewed the evidence on
the association between air pollution and
cardiorespiratory diseases and investigated the
effect modifiers of the air pollution–health
relationship by considering 4 groups of var-
iables: (1) energy, (2) transportation, (3) so-
cioeconomic factors, and (4) air quality
control variables. This study improves the
regional transferability of health effect esti-
mates by controlling for modifying variables,
which should allow more effective air pol-
lution policies and standards.

METHODS
We performed this study in 5 stages. First,

we systematically reviewed the literature to
identify research on the association between
air pollution and cardiorespiratory diseases.
In the second stage, we performed a meta-
analysis to estimate the overall effect of air
pollution on the composite outcome of
any cardiovascular or respiratory disease
(hospital admissions and mortality) and to
account for both within- and between-study
heterogeneity. In the third stage, we created
a data set with potential modifier variables
on the association between air pollution
and cardiorespiratory diseases. Then we ap-
plied a model selection with regression
shrinkage to identity the modifier variables
that may be associated with cardiorespiratory
diseases and, finally, we performed meta-
regression analyses to evaluate the modifier
variables that contribute to heterogeneity
among studies.

Search Strategy, Selection Criteria,
and Data Extraction

We searched PubMed and Web of
Science by using the following keywords: “air

pollution,” “cardiovascular diseases,” “re-
spiratory diseases,” “mortality,” and “hos-
pital admissions.” We limited our search to
studies published between 2006 andMay 11,
2016 (to access modifier variables), and to
studies in English, Portuguese, or Spanish.
We considered peer-reviewed original ar-
ticles only. In Appendix A (available as
a supplement to the online version of this
article at http://www.ajph.org), we present
the full search criteria and the number of
studies identified, excluded, and included
from our search.

Following the PreferredReporting Items
for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, 2 of the authors
(W.R. and M. A.) first independently
reviewed article titles and abstracts. They
based the final inclusion of studies on full-
text evaluation. In case of disagreement,
a third researcher (A. A.) resolved any
discrepancies.

We included studies if they met all of the
following criteria:

1. considered at least 1 of these air pollutants:
carbon monoxide (CO), sulfur dioxide
(SO2), nitrogen dioxide (NO2), ozone
(O3), particulate matter 2.5 micrometers
or less (PM2.5), or particulate matter 10
micrometers or less (PM10);

2. reported risk for hospital admissions,
mortality, or both;

3. presented individual results for respiratory
diseases (International Classification of Dis-
eases, Ninth Revision [ICD-9] 460–519 or
ICD-10 J00–J98), cardiovascular diseases
(ICD-9 390–459 or ICD-10 I00–I99), or
both23,24;

4. considered the age groups younger than
5 years, older than 65 years, or all ages;
and

5. did not segregate the analysis by gender.
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Finally, we selected significant results from
a single pollutant model and with lag 0.

We extracted the following data from
each study included in our analysis: first
author, publication year, period of anal-
ysis, pollutant (CO, SO2, NO2, O3,
PM2.5, or PM10), health outcome (mor-
tality or hospital admissions), disease
(respiratory or cardiovascular), age (< 5
years, > 65 years, or all ages), location (city
and country), study design (time–series,
case–crossover, or study cohort), number
of events (when not stated in the paper, we
estimated from mean daily values and the
study period), risk estimates, measure of
uncertainty (95% confidence interval
[CI]), and the confounders included in
each study (e.g., temperature, humidity,
season). We contacted authors for addi-
tional data or clarification when
necessary.

With regard to the location, we included
both single-city and multicity studies.
However, we included city-specific results
when a single study reported results from
multiple cities. With regard to O3, we con-
verted results from 1-hour and 8-hour
maximum to the daily average.We converted
this value by using a relationship of 20 (1-hour
maximum):15 (8-hour maximum):8 (daily
average). This approach has been used in
previous studies.25

We expressed all risk estimates as the
percentage change in the number of health
outcomes associated with every 10 micro-
grams per cubic meter change in pollutant
concentration. We converted results re-
ported in parts per billion or parts per
million to micrograms per cubic meter as-
suming the standard pressure and temper-
ature conditions. We standardized results
on the basis of different values from 10
micrograms per cubic meter (e.g., inter-
quantile range).

Meta-Analysis
First, we calculated the effect size and

variance, which is needed as input data for the
meta-analysis. Because all risk estimates were
based on a Poisson or logistic regression, we
calculated the effect size converting the risks
to log scale. We calculated the variance (Vi)
on the basis of the CI’s upper (A), and lower
(B) bounds:

ð1Þ Vi ¼ lnAð Þ � lnBð Þ
3:92

� �2

We used a random-effects model to per-
form the meta-analysis. This model assumes
that average effect size in the population varies
randomly from study to study.26–28 The
random-effects model assumes that

ð2Þ b

ˇ

i ¼ bi þ «i «i ~ Nð0;s

ˇ

i
2Þ

ð3Þ bi ¼ bþ ui ui ~ N 0; t2
� �

where b

ˇ

i is the estimated effect size; i is the
study included in the analysis, which is equal
to 1,2,3, . . ., n, where n is the number of
the enrolled studies; s

ˇ

i
2 is the estimated

variance; b is the overall effect; bi is the
mean effect at the study level; t2 is the
variability of bi around B (between-study
variance); and ei and ui are random error
normally distributed and mutually
independent.

We assessed heterogeneity with the I2

test, in which I2 values of 25%, 50%, and
75% correspond to cut-off points for low,
moderate, and high degrees of heteroge-
neity.29 We assessed the publication bias by
using Egger’s regression test and normal
quantile plot.29,30 We performed analyses in
R version 3.3.0 (R Foundation, Vienna,
Austria).

Modifier Variables
We created a data set with 14 potential

modifier variables on the association between
air pollution and cardiorespiratory diseases.
We grouped the modifier variables into 4
categories. The first category was energy use,
which included measurements of clean
electricity production, dirty electricity pro-
duction, and total electricity net consump-
tion. The second category was transportation,
which included the consumption of biofuels,
consumption of distillate fuel oil, consump-
tion of motor gasoline, and motor vehicles.
The third category, socioeconomic status
indicators, included population density, ur-
ban population, gross domestic product, and
education. The last category included air
quality control variables: CO2 emissions,
prevalence of smoking, and solid fuels as main
cooking fuel.

We calculated these variables at the na-
tional level and their period coincided with

the study period applied in each applicable
research paper. In Appendix B (available as
a supplement to the online version of this
article at http://www.ajph.org), we present
the details of each variable, including the units
and the data source.

Statistical Analysis
First we assessed the association between

14 modifier variables and cardiorespiratory
diseases by using a model selection with re-
gression shrinkage. Then we performed
a meta-regression analysis to evaluate the
significantmodifier variables (indicated by the
model selection) that contribute to hetero-
geneity among studies.

Selecting predictors from a large collection
of possible covariates is a difficult process.
Many methods (e.g., stepwise) are empirical
and ignore stochastic errors during the sta-
tistical modeling.31 To overcome these po-
tential issues, we applied the least absolute
shrinkage and selection operator (LASSO) to
select the modifier variables that may be as-
sociated with cardiorespiratory diseases.

LASSO is an approach to select a parsi-
monious set of variables and estimate co-
efficients simultaneously. The LASSO
approach performs variable selection by
constraining the sum of the magnitudes of the
coefficients and applying a penalty to the
component regression coefficients. The
penalty is an estimator that minimizes the sum
of squared errors subject to the sum of the
absolute values of the regression coefficients
to be less than a fixed value.31,32 Briefly,
LASSO coefficient ðb

ˇ

lassoÞ is expressed as:

ð4Þ b

ˇ

lasso ¼ argminb
Xn
i¼1

· yi � b0 �
Xp
j¼1

xijbj

 !2

þ l
Xp
j¼1

bj

��� ��� subject to
Xp
j¼1

bj

��� ��� < t

where n is the observations (number of
studies), p is the covariate (total of 14), yi is the
outcome (cardiorespiratory disease risk), x is
the covariate vector for the ith case, t is the
parameter that determines the amount of
regularization, and l is the penalty parameter.

We selected the modifier variables with
non-0 coefficients and we chose the l having
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the smallest Bayesian information criterion.
Then we used a meta-regression (mixed ef-
fects model) to explore where variables rep-
resenting different aspects of energy,
transportation, socioeconomic status, and air
quality control variables could explain the
varying effects of air pollution on cardiore-
spiratory diseases. We performed LASSO and
meta-regression analyses in R version 3.3.0.

RESULTS
We assessed the title and abstract of 2183

studies. From those studies we selected 529 for
text review from which 70 articles fulfilled the
inclusion criteria. In Figure A (available as
a supplement to theonline version of this article
at http://www.ajph.org), we present a flow-
chart that shows the number of studies iden-
tified, included, and excluded from analysis. In
Appendix C (available as a supplement to the
online version of this article at http://www.
ajph.org), we present the details of the 70 ar-
ticles including the bibliographic information,
the period of study, pollutant(s) observed,
health outcome measure, disease, age cate-
gories, city, country, and study design for the
articles that met the inclusion criteria.

Two studies reported results for CO, 23 for
NO2, 7 forO3, 36 for PM10, 28 for PM2.5, and
14 for SO2. With regard to the health out-
come, 34 studies evaluated hospital admissions
and 39mortality. For type of disease, 53 studies
estimated cardiovascular diseases and 46 re-
spiratory diseases. Regarding age groups, 5
studies showed results for people aged younger
than 5 years, 26 for people aged older than 65
years, and 55 for all ages. For study design, 26
studies are case–crossover, 9 cohort, 34 time
series, and 1 case–control (Table B, available as
a supplement to the online version of this
article at http://www.ajph.org). Most of the
studies reported results for more than 1 cate-
gory of pollutant, health outcome, disease, or
age. The 70 studies selected for meta-analysis
incorporated more than 30 million events
across 28 countries.

Meta-Analysis
In Appendix D (available as a supplement

to the online version of this article at http://
www.ajph.org) we report forest plots for each
pollutant by health outcome, and in

Appendix E (available as a supplement to the
online version of this article at http://www.
ajph.org) we present the pooled risk by lo-
cation. Figure 2 shows the pooled risk by
pollutant, age group, and health outcome.
The overall risk estimated for hospital ad-
missions was larger than mortality for all
pollutants, except PM2.5.

With regard to hospital admissions, the
youngest age group (aged < 5 years) dem-
onstrated the highest risk across all pollutants,
except NO2 and CO. Respiratory diseases
showed the strongest association, especially
for O3 and PM10, for which we found a risk
equal to 2.4% (95% CI= 1.6%, 3.7%) and
2.3% (95% CI= 1.6%, 3.2%), respectively
(Figure 2).

For mortality, the oldest age group (aged
> 65 years) showed the highest risk for PM10,
whereas the youngest age group demon-
strated the highest risk for O3. There are no
studies reporting association between chil-
dren (aged < 5 years) and the pollutants PM2.5

and SO2. Respiratory diseases showed the
highest risk for PM10 (1.3%; 95% CI= 0.9%,
1.7%), PM2.5 (2.7%; 95% CI= 0.9%, 7.7%),
and O3 (0.8%; 95% CI= 0.2%, 2.3%),
whereas cardiovascular diseases demonstrated
highest risk for SO2 (1.1%; 95% CI= 0.8%,
1.6%) andNO2 (1.6%; 95%CI= 1.2%, 2.2%).
There is no report presenting association
between respiratory diseases and CO
(Figure 2).

InAppendix F (available as a supplement to
the online version of this article at http://
www.ajph.org) we report I2 test and Egger’s
regression test results stratified by pollutant,
age, and disease. When we considered the
overall risk for hospital admissions, we ob-
served high heterogeneity between studies for
CO, PM10, PM2.5, and SO2 (I

2 > 75%), and
moderate for NO2 and O3 (I

2 = 50%, 75%).
Publication bias (Egger’s test for asymmetry)
was significant for O3 (P= .005), PM10

(P= .033), and PM2.5 (P= .038), and non-
significant for NO2 (P= .054), CO (P= .791),
and SO2 (P= .339).

When we observed the overall risk for
mortality (Table D, available as a supplement
to the online version of this article at http://
www.ajph.org), we found high heteroge-
neity for PM10, PM2.5, and SO2 (I

2 > 75%),
and moderate for NO2 and O3 (I

2 = 50%,
71%). Publication bias was significant only
for O3 (P= .048). For CO, the number

of reports is very low (n = 2), to which it is
not possible to apply I2 test and Egger’s
regression test.

In Appendix J (available as a supplement to
the online version of this article at http://
www.ajph.org) we include a normal quantile
plot for overall risk by pollutants, and health
outcome (hospital admissions and mortality),
which can help to identify whether all studies
come from a single population (search for
publication bias as well).

Effect Modifiers
We present in Appendix G (available as

a supplement to the online version of this
article at http://www.ajph.org) the LASSO
coefficient paths for each pollutant, except for
CO because the number of observations is
low (n= 5). Coefficients are expressed as
the change in mean cardiorespiratory diseases
per variation in the modifier. Each plot in
Figure D indicates the rate at which the
modifier’s coefficient shrinks toward 0 as l
increases.

When l is equal to 0, there is no shrinkage,
and themodel is just the ordinarymixed effect
regression of the fixed modifiers. Our results
showed that whenl is equal to 0, all modifiers
have non-0 coefficients (FigureD, available as
a supplement to the online version of this
article at http://www.ajph.org).

We selected the modifier variables with
non-0 coefficients at the lwith the smallest
Bayesian information criterion, and thenwe
performed the meta-regression analysis.
The modifiers selected from each pollutant
are presented in Appendix H (available as
a supplement to the online version of this
article at http://www.ajph.org). Clean
electricity production was the most im-
portant modifier; it was selected for all
pollutants except SO2 and PM10 (when we
considered hospital admissions) and O3

(when we considered mortality). We did
not apply meta-regression to the age group
and disease group because of few
observations.

In the meta-regression analysis, we ob-
served a statistically significant effect (P< .05)
in the test of moderators in all pollutants,
suggesting that themodifier variables influence
the average cardiorespiratory disease risk and
may explain the varying effects of air pollution
among studies. When we considered hospital
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admissions, the modifiers contribute to high
heterogeneity between studies for NO2

(I2 = 94%) and SO2 (I
2 = 92%); moderate

heterogeneity for O3 (I
2= 59%) and PM2.5

(I2 = 69%); and low heterogeneity for PM10

(I2 = 44%).Whenwe observed onlymortality,
we found high heterogeneity for NO2 (I

2=
96%), O3 (I

2= 78%), and SO2 (I
2= 96%), and

moderate heterogeneity for PM10 (I
2= 54%)

and PM2.5 (I
2 = 64%; Figure E, available as

a supplement to the online version of this
article at http://www.ajph.org).

We plotted the modifier variables with
significant coefficients (P < .05) in a global
map (Appendix I, available as a supplement to
the online version of this article at http://
www.ajph.org). In addition, we show in this

global map the cardiorespiratory diseases
risk attributable to exposure to gaseous and
particulate air pollutants. We present in
Figure 3 these modifier variables and the
cardiorespiratory disease risk associated with
particulate emissions.

DISCUSSION
We assessed the global association of air

pollution and cardiorespiratory diseases by
summarizing the available evidence from the
literature, and investigated whether variables
representing different aspects of energy,
transportation, and socioeconomic factors
could explain the varying effects of this

association. We found positive associations
between cardiorespiratory diseases and all air
pollutants.

Other studies have reported global asso-
ciations between air pollution and health.
Song et al.33 showed that each increment of
10 micrograms per cubic meter of PM10 was
associated with an increase in obstructive
pulmonary diseasemortality inChina,United
States, and the European Union. Shah et al.34

performed a systematic review and meta-
analysis to assess the global association be-
tween air pollution and heart failure. The
authors found that heart failure was associated
with increases in CO, SO2, NO2, PM10,
PM2.5, but not O3. Atkinson et al.35 showed
that a 10 microgram per cubic meter
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Note. PM10 =fine particulate matter of £10 mm; PM2.5 =fine particulate matter of £ 2.5 mm. Because most of the studies reported results for more than 1 category of
pollutant, health outcome, disease, or age, “n” here represents the number of reports, and not the number of studies. Red circle = hospital admissions; blue
circle =mortality; black circle = there is no report; whiskers = 95% confidence interval.

FIGURE 2—Global Association Between Air Pollution and Health Stratified by Age, Health Outcome, and Diseases, for (a) Carbon Monoxide,
(b) Nitrogen Dioxide, (c) Ozone, (d) PM10, (e) PM2.5, and (f) Sulphur Dioxide: Studies Published Between 2006 and May 11, 2016

AJPH RESEARCH

Supplement 2, 2018, Vol 108, No. S2 AJPH Requia et al. Peer Reviewed Systematic Review S127

http://www.ajph.org
http://www.ajph.org
http://www.ajph.org


increment in PM2.5 was associated with
a 1.04% (95% CI= 0.52%, 1.56%) increase in
the risk of death for cardiorespiratory diseases.
In our study, we found a 1.64% (95%
CI= 1.06%, 2.53%) increase in hospital ad-
missions attributable to cardiorespiratory
diseases per 10 microgram per cubic meter
increment in PM2.5.With regard tomortality,
we found a 2.29% (95% CI= 1.36%, 3.85%)
increase in cardiorespiratory diseases per 10
microgram per cubic meter increment in
PM2.5. Atkinson et al. also showed that as-
sociations for respiratory causes of death were
larger than for cardiovascular causes. We
found the same effect in our study.

Globally, we found the effect of air pol-
lution on health outcomes to spatially vary
across the 28 countries assessed. The highest
risks occurred in Brazil (CO, hospital ad-
missions; PM10, hospital admissions), China
(CO, mortality), United States (NO2,

mortality; O3, mortality), India (SO2 and O3,
hospital admissions), United Kingdom
(PM10, mortality), and Taiwan (PM2.5,
mortality). Our results are in accordance with
a global burden study that assessed the am-
bient air pollution exposure and reported that
exposure to PM2.5 increased by 20.4% driven
by trends in South Asia (e.g., Taiwan).36 In
India, the exposure to O3 increased by 20.2%
between 1990 and 2013. Lelieveld et al.37

identified that the United States population
has an elevated exposure to NO2, for which
the emission sources are primarily from traffic
and power generation. We identified no
studies that provide a global perspective on
the health effects from CO, SO2, and PM10

exposure.
Our findings showed that variables related

to aspects of energy, transportation, and so-
cioeconomic status may explain the varying
effect size of the association between air

pollution and cardiorespiratory diseases.
These modifier effects agree with previous
localized studies. Our results showed that
clean electricity production, consumption of
biofuels, and urban population are significant
modifier variables that account for 69% of
the heterogeneity of the PM2.5 exposure
(hospital admissions). When we considered
mortality attributable to PM2.5 exposure, the
significant modifier variables were clean
electricity, consumption of motor gasoline,
cooking fuel, population density, and edu-
cation. These variables accounted for 64% of
the heterogeneity.

In a rural Chinese population, energy
generation and electric vehicle adoptionwere
strongly associated with the variation in the
exposure to PM2.5 resulting in a varied
geographic distribution of health impacts.38

In Santiago, Chile, fuel consumption was
a significant factor to understand PM2.5 trends

Country CleanElect. Biofuels Gas Elect. Smoking Cooking Pop. UrbanPop. Educ.
Admissions Mortality

PM10 PM2.5 PM10 PM2.5

Australia 8 1.2E-04 1.6 1.0 17 3 3 87 13 4.0 3.3 — —

Brazil 90 9.3E-02 0.2 0.2 17 11 22 81 8 3.2 4.5 1.5 —

Canada 76 1.1E-02 2.0 1.5 17 3 3 41 13 2.3 — 1.8 —

Switzerland 98 2.7E-03 1.1 0.8 25 3 188 74 13 1.7 — 1.3 —

Chile 51 0 0.3 0.3 40 14 21 86 10 — — 1.5 0.7

China 19 1.8E-03 0.1 0.2 26 53 139 39 8 2.4 0.5 0.5 1.0

Colombia 76 0 0.2 0.1 12 19 38 73 7 — — 1.3 —

Cyprus 0 0 0.5 0.3 32 3 102 68 12 1.2 — — —

Czech Rep. 35 3.9E-03 0.5 0.6 34 6 133 74 12 — 3.0 — —

Denmark 13 0 0.8 0.6 20 3 127 86 13 2.2 — — —

Spain 42 1.2E-02 0.4 0.5 31 3 86 77 10 — — 3.2 —

France 92 1.3E-02 0.5 0.7 29 3 111 77 11 1.0 — — —

United Kingdom 27 2.1E-02 0.7 0.5 21 3 253 80 13 — — 5.5 6.8

Israel < 0.1 1.4E-03 0.8 0.7 31 3 338 91 13 0.8 — — —

Italy 16 7.0E-03 0.6 0.5 25 3 197 68 10 2.2 — 0.7 6.0

Japan 32 1.6E-04 0.8 0.8 24 3 351 83 12 — — — 0.9

S. Korea 37 9.8E-03 0.7 1.5 28 3 201 80 12 0.7 — 0.5 4.3

Lebanon 7 0 0.9 0.3 36 3 434 86 8 1.5 3.1 — —

Mexico 17 5.0E-06 0.5 0.2 16 18 54 75 9 3.1 — 1.0 —

New Zealand 74 0 1.3 0.9 18 3 15 86 13 — — 4.3 —

Portugal 17 5.7E-03 0.4 0.4 23 3 114 56 8 — — — 2.4

Thailand 5 8.7E-05 0.2 0.2 22 43 129 36 7 0.1 — 0.9 —

Taiwan 6 4.4E-04 0.5 0.9 18 9 635 78 10 — — — 7.0

United States 29 5.3E-02 2.9 1.2 19 3 31 79 13 1.1 1.4 1.0 2.3

Vietnam 34 0 0.1 0.1 25 76 269 26 8 0.6 — — —

Note. Biofuels = consumption of biofuels, 1000 barrels per day/100 000 people; Clean Elect. = clean electricity production, %; Cooking = percentage of population using
solid fuels as main cooking fuel; Educ. = education, mean years of schooling; Elect. = total electricity net consumption, annual billion kWh per 100 000 people; Gas =
consumption of motor gasoline, 1000 barrels per day/100000 people; PM10 =fine particulate matter of £ 10 mm; PM2.5 =fine particulate matter of £ 2.5 mm; Pop. =
population density; Smoking = prevalence of smoking, %; Urban Pop. = urban population, %. We selected the modifier variables shown here on the basis of the modifiers
that presented significant coefficients (Appendix H, available as a supplement to the online version of this article at http://www.ajph.org).We calculated themean value for
each modifier variable by considering the study period stated in the literature. According to our selection criteria, there are no studies reporting risk for the specific
particulate and country (—). Green color scheme represents the range values of each modifier variable, for which dark green is the highest value. Red color scheme
represents the range values of each health variable (cardiorespiratory disease risk), for which dark red is the highest value.

FIGURE 3—Cardiorespiratory Disease Risk (%) Attributable to Exposure to Particulate Air Pollutants and Distribution of Significant Modifier
Variables by Country, in Studies Published Between 2006 and May 11, 2016
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and to inform air quality control efforts.39

Lelieveld et al.37 found that emissions from
residential energy use such as heating and
cooking contribute significantly to PM2.5,
which is the largest driver for global pre-
mature mortality. Villeneuve et al.40 also
found that cigarette smoking and socio-
demographic characteristics are associated
with ambient PM2.5 and mortality in
Canada.

In our study, we observed that clean
electricity production, consumption ofmotor
gasoline, total electricity consumption, and
smoking account for 59% of the heteroge-
neity of the O3 health outcomes (hospital
admissions). When we considered mortality
attributable to O3 exposure, the significant
modifier variables were consumption of
motor gasoline, total electricity consumption,
population density, and education, which
accounted for 78% of the heterogeneity.
Razeghi et al.41 examined the association
between power generation, transportation,
and air quality in the United States, and they
found that O3 and PM2.5 decreased with the
introduction of wind energy to the grid mix
and the use of plug-in electric vehicles.
Tessum et al.42 evaluated air quality (PM2.5

andO3)–related human health impacts of fuel
type including the use of electric vehicles, and
the use of electricity from a range of con-
ventional and renewable sources. The authors
found that the health impacts varied by 80%
depending on the use of fuel and electricity
source. Electric vehicles powered by clean
electricity (wind, water, or solar power) re-
duced environmental health impacts by at
least 50%.

Our findings showed that significant
modifier variables related to energy, trans-
portation (e.g., fuel type, including biofuels,
and consumption of distillate fuel oil), and
socioeconomic factors contribute to 94% for
heterogeneity of the NO2 exposure when
one considers hospital admissions, and 96%
when one considers mortality. Jacobson43

estimated that both gasoline and ethanol
combustion are anticipated to cause at least
10 000 premature deaths in the United States
in 2020. Jacobson projected that in Los
Angeles, California, emissions from gasoline
cars will contribute to 68 900 tons of NO2 in
2020. Tsao et al.44 identified a significant
association between NOx emissions and
biofuels (sugar-cane ethanol) in Brazil.

Pinault et al.45 observed that socioeconomic
aspects are important to assess differences in
exposure to NO2 in 3 Canadian cities:
Toronto, Montreal, and Vancouver.

Strengths and Limitations
The main strengths of our study are as

follows: First, ourfindings add to the evidence
that, from an international perspective, there
is important heterogeneity in the effects of air
pollution on cardiorespiratory diseases. Sec-
ond, to our knowledge, this is the first study
that estimated effects from energy, transporta-
tion, and socioeconomic characteristics on
human exposure to air pollutants from a
global perspective. Third, we applied the
LASSO approach to investigate the global
relationship between air pollution and car-
diorespiratory diseases. This method has ad-
vantages over other conventional methods in
linear regression because they are empirical
and ignore stochastic errors, which may re-
duce power because of collinearity among
components.

On the other hand, limitations to our study
include that we did not quantify temporal
effects of air pollution. We only assessed
studies in English, Portuguese, and Spanish.
This may increase the probability of publi-
cation bias. However, we must consider that
most of the studies are in English. We have
not considered the phenotype of pre-existing
cardiorespiratory diseases, because these data
are not available. The risk estimated by our
study may be greater in patients with pre-
existing cardiorespiratory diseases.46 We did
not consider personal exposures and therefore
we may underestimate the risk.47,48 We have
considered only single pollutants, which does
not take into consideration potential additive
effects of multiple pollutants.49 Although
mortality is often used as surrogate for in-
cidence, we must be cautious about using
mortality, especially for cardiorespiratory dis-
ease, as it may not be well-reported on death
certificates. We observed significant hetero-
geneity in our analyses. This could indicate
differences in ambient air pollution, population
characteristics, and environmental exposure.
However, pooled risk presented consistency
and the effect direction was not altered in our
additional analyses. The modifiers refer to the
country level. We were unable to access
modifier data at the local level from each

study (most of the studies reported results at
the city level). Finally, to interpret our results,
we have to consider the residual confounding
and the ecological fallacy.

Conclusions
The association of air pollution and car-

diorespiratory diseases is a global concern.
Hospitalizations and mortality attributable to
this association have serious economic con-
sequences. Factors related to energy, trans-
portation, and socioeconomic conditions are
important variables that explain the varying
effects of air pollution on cardiorespiratory
diseases. The findings from our study provide
a mechanism to estimate the health effects of
air pollutants in cities globally while con-
trolling for modifier effects. The model
presented in the article can be used to provide
support for the creation of effective envi-
ronmental health public policies for national
and international intervention.
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