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Spectral variations of vegetation, known as crop marks, have been widely used for archaeological research as a
proxy to detect buried archaeological remains. Such marks can be recognized using space-borne data and
image analysis techniques supported by the existing archaeological knowledge of the area under study. Orthog-
onal equations for the enhancement and detection of crop marks using multispectral satellite images have been
recently proposed in the literature. The proposed equations are linear transformations of the initial spectral
bands of multispectral datasets aiming to the improvement of the satellite images. For the calculation of the n-
space coefficients of this linear transformation a four-stepmethodologywas followed, separately for each sensor.
This paper aims to provide the fundamental concept of the development of these equations as well as some as-
pects related with the application and accuracy assessment. Spectral characteristics of the sensor, atmospheric
effects, and spectral calibration of the datasets as well as the selection of the appropriate period for applying
these equations for the enhancements of crop marks are also discussed. Such orthogonal equations may be fur-
ther developed and applied for any kind of sensor either hyperspectral ormultispectral for the detection of buried
archaeological remains. An example of the applicability of the orthogonal equations at Stonehenge archaeological
site is also demonstrated.

© 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cropmarks have beenwidely used as a proxy for the exposure of ar-
chaeological remains (Gojda and Hejcman, 2012; Alexakis et al., 2009,
2011; Cavalli et al., 2007; Wilgocka et al., 2015; Agapiou et al., 2012).
Crop marks are frequently observed in agricultural fields where crops
overlay near-surface archaeological remains. The latest tend to retain
different percentage of soil moisture compare to cultivate crops that
do not cover archaeological remains and therefore the crops can either
be stressed or enriched (Winton and Horne, 2010). Consequently,
crop marks are formed as an indirect effect of the buried archaeological
remains.

The detection of crop marks had attracted the interest of archaeolo-
gists especially in the beginning of the 21st century, mainly due to the
new capabilities of the satellite and airborne sensors which could pro-
vide higher spatial and spectral resolution. However, several researches
tend to agree that suchmarks are difficult to be detected since they con-
stitute a complicated phenomenon (Kaimaris and Patias, 2012). As a re-
sult, the recognition of crop marks using remote sensing data is still
considered to be extremely challenging.
. This is an open access article under
In the literature a variety of remote sensing techniques are usually
applied in satellite datasets for the detection of crop marks. These tech-
niques include amongst other vegetation indices, histogram enhance-
ments, Principal Component Analysis (PCA). Recently, Agapiou et al.
(2013a, 2015) have proposed orthogonal equations for a variety of mul-
tispectral satellite datasets that can directly applied for the enhancement
of multispectral images and therefore the detection of cropmarks. In de-
tail, Agapiou et al. (2013a, 2015) have suggested linear equations for
QuickBird; IKONOS; WorldView-2; GeoEye-1, ASTER; Landsat 4 TM;
Landsat 5 TM and Landsat 7 ETM+ sensors. Further details regarding
the orthogonal equations as well as the evaluation report can be found
there (Agapiou et al., 2013a, 2015). Although these equations have
been initially developed for archaeological sites of the easternMediterra-
nean, they have been also exploited in other regions aswell (Wilgocka et
al., 2015; Rączkowski and Ruciński, 2015; Pagés and Calleja, 2015).

The aim of this paper is twofold: from one hand the paper intends to
provide the basic concept and some critical issues related with the ap-
plicability of these orthogonal equations, while on the other hand it
aims to assist researchers for developing new equations for other
kinds of sensors for supporting archaeological research in other areas
beyond the easternMediterranean. The latest may push further archae-
ological research to automatic or semi-automatic procedures for the de-
tection of crop marks in vast areas (i.e. archaeolandscapes) and
therefore assist archaeological research in a landscape level. In addition,
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Fig. 1. Reflectance values for the Red and NIR band over the simulated archaeological site
(Alampra case study, seeAgapiou et al., 2013a, 2013b). Themeasurementswere separated
into three main categories: soil spectral signatures; healthy crop spectral signatures and
crop marks spectral signature.

Fig. 2. PCA 1 and PCA 3 components after the transformation of the reflectance values
(Alampra case study).
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the identification of crop marks which in turn can be linked with the
presence of the archaeological remains can be used to protect still un-
known and un-excavated cultural heritage sites.
2. Basic concept

The proposed orthogonal equations as those have been proposed by
Agapiou et al. (2013a, 2015) have been calculated using a four step
methodology -for each sensor- as this is briefly indicated below. It
should be noticed that the methodological framework of the work
was based upon the fundamentalwork of Kauth and Thomas (1976) ap-
plied for the development of Tasseled-Cap transformation. The basic
idea for the development of the new orthogonal equations is to rotate
the linear transformation of ground truth datasets after a PCA analysis
into a new vector space.

•Step 1: In situ spectral signatures have been systematically collected
over simulated archaeological environment using a handheld
spectroradiometer (see Agapiou et al., 2013b). The spectral range of
the measurements was limited to the visible and infrared part (NIR) of
the spectrum (i.e. 450–900 nm) with a span of 1.5 nm interval. Mea-
surements were retrieved during a complete phenological cycle of the
crops. Using the appropriate Relative Spectral Response (RSR) filters of
each sensor under study (i.e. QuickBird; IKONOS; WorldView-2;
GeoEye-1, ASTER; Landsat 4 TM; Landsat 5 TM and Landsat 7 ETM+
sensors) the ground hyperspectral measurements have been re-calcu-
lated to the appropriate broadband reflectance. Fig. 1 shows the simula-
tion final outcomes for the red and NIR band for Landsat 5 TM sensor
after the spectral up-scaling of the ground spectroradiometric measure-
ments. As it is demonstrated, detection of crop marks can be a very dif-
ficult task using reflectance values without any post-processing and
further analysis of the data. Indeed, crop marks and healthy vegetation
tend to give very similar reflectance spectral profiles and therefore
their distinction can be problematic.
Table 1
PCA coefficients for the Landsat 5 TM sensor. The first three PCA coefficients could explain
more than 99% of the total variance of the data.

PCA 1 PCA 2 PCA 3 PCA 4

Band 1 −0.076 −0.396 0.304 0.863
Band 2 −0.023 −0.505 0.713 −0.486
Band 3 −0.142 −0.752 −0.630 −0.136
Band 4 0.987 −0.150 −0.051 0.036
Explained 72.83% 24.32% 1.84% 1.02%
•Step 2: Then, the PCAwas applied for each dataset for each sensor in
order to create the initial eigenspace. PCA was applied to the whole
dataset and the first three principal components (PC) have been used.
Therefore from the initial four bands of each sensor (B-G-R-NIR) the
dataset was limited to three PCs and eigenvectors. The results have
shown that the first three components of PCA analysis can explain 99%
of the variance of the initial data: PCA 1 = 72.63%; PCA 2 = 25.08%;
PCA 3 = 1.43%. The coefficients for the PCA transformation are given
in Table 1 for Landsat 5 TM sensor:

Fig. 2 present the newvalues for Landsat 5 TMafter the PCA transfor-
mation. As it is shown, soil and vegetation targets (i.e. healthy vegeta-
tion and crop marks) can be separated in the 2D space of PCA 1 – PCA
3, while crop marks could then be recognized from the rest of the veg-
etation especially in the phenophase (time-window) where the crops
are photosynthesize.

•Step 3: After the PCs have been defined, the authors have identified
three axes in the new 3D space of the dataset (i.e. PC1-PC2-PC3) as fol-
lowing: soil, vegetation and crop marks. The selection of crop marks
axeswasmade upon the best phenophase of the crops,where frompre-
vious studies (Agapiou et al., 2013b) it was found to be the most prom-
ising period for detection of crop marks. These axes were defined as
vectors in this new 3D space with a position vector at the point (0, 0,
0). Then the relative angles between these new axes and the PCs eigen-
vectors have been calculated.

•Step 4: The final step includes the 3D rotation of the PCA values into
the new 3D orthogonal space of the new axes (soil; vegetation; crop
marks). The new coefficients have been calculated after a 3D rotation
of the eigenvalues based on the relatives angles calculated is Step 3.
Therefore new linear coefficients (using the PCA coefficients of Table
1) have been calculated, for the different sensors as indicated for in-
stance for Landsat 5 TM:

CC1 ¼ −0:04 � ρBand 1TM þ 0:02 � ρBand 2TM

−0:04 � ρBand 3TM þ 1:00 � ρBand 4TM

CC2 ¼ −0:47 � ρBand 1TM−0:67 � ρBand 2TM

−0:57 � ρBand 3TM−0:03 � ρBand 4TM

CC3 ¼ 0:19 � ρBand 1TM þ 0:56 � ρBand 2TM

−0:81 � ρBand 3TM−0:04 � ρBand 4TM

ð1Þ

where CC1 (i.e. Crop Coefficient) corresponds to the vegetation axis;
CC2 to soil and CC3 to crop mark axis. Such equations are expected to
enhance crop marks, vegetation and soil pixels for each specific sensor



Fig. 3. Spectral profile of crop marks (red line) and healthy cultivated crops (blue line) during the boot stage (left) and prior to the boot stage (right) of the crops. Dash lines indicate the
standard deviation of the reflectance (Agapiou et al., 2013b).
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selected. The proposed equations have been evaluated in different ar-
chaeological sites of Cyprus and Greece (i.e.“Nea Paphos”; “Ilis”;
“Thesallian Plain”) with success. Further details from these applications
can be found in Agapiou et al. (2013a, 2015).

3. Spectralconfusion

This section aims to address some important aspects related to the
usage and expectations from the above mentioned orthogonal equa-
tions. The phenological status, the vegetation type, the spatial resolution
of the images, the impact of the atmospheric effects and the spectral
characteristics of the satellite sensors used can influence thefinal results
and interpretation.

3.1. Phenological cycle and crop marks

As stated earlier, the detection of crop marks in satellite datasets in
not an easy task. This is mainly due to the fact that the spectral profile
of the crop marks is quite similar to the rest cultivated crops for a long
period during the phenological cycle. Indeed, as it was found from pre-
vious studies (Agapiou et al., 2013b), crop marks and healthy crops are
quite difficult to be spectrally distinguished especially during the first
phenological stages of the crops. The best period for detecting crop
marks was found to be during the boot stage (15 days' periods). During
Fig. 4. PCA 1 and PCA 2 components after the transformation of the reflectance values
(Alampra case study).
this period the spectral signature of the cropmarks is statistically signif-
icantly different from the rest cultivated field as shown in Fig. 3.

Therefore, the proposed equations shouldworkmore efficientwhen
satellite data are available for this period (i.e. boot stage) Fig. 4, indicates
the PCA1 and PCA3 feature space during the boot stage of the crops. The
reflectance values of crop marks and healthy vegetation can be distin-
guished after the application of the PCA transformation and further en-
hanced with the rotation of the data to the new CC axes.

However, the selection of the appropriate datasets during the best
phenophase for space observation of cropmarks is not usually available.
Many times, the satellite data selected for archaeological research are
archive images taken over the area of interest in various and different
phenological stages. For this reason, the authors have proposed differ-
ent equations for a specific sensor (Landsat 5 TM) for three periods dur-
ing the phenological cycle of the crops: (a) Period I: from the seeding
period until the crops are fully vegetated (Points B to C in Fig. 5); (b) Pe-
riod II: until the beginning of the boot stage (Points C to D in Fig. 5) and
(c) Period III: until the end of the boot stage (Points D to E in Fig. 5). The
authors have followed the samemethodology as descripted in Section 2
for Landsat 5 TM sensor. Such approach can be expanded and followed
for any other sensors as well.

An example of the variations that observed in different phenological
stages can be seen in Fig. 6, indicating the 2D space of CC2 and CC3 (i.e.
soil and crop mark axis) for crop marks, vegetation and soil. As it is
shown, during period I, soil is spectrally mixed with the vegetation
Fig. 5. Phenological cycle of the crops. Important stages of the cycle are indicated in the
figure with letters (A to F) while other information regarding the status of the crop is
also provided (Agapiou et al., 2013b).



Fig. 6. Soil and Crop mark axis (CC2 and CC3 respectively) applied in three different
periods of the phenological cycle: a) from the seeding period until the crops are fully
vegetated (Points B to C in Fig. 2); (b) until the beginning of the boot stage (Points C to
D in Fig. 2) and (c) until the end of the boot stage (Points D to E in Fig. 2).

Fig. 7. Spectral profile of vegetation (green line) and soil (red line). Dashed lines indicate
the spectral profile of mixed pixels (e.g. 90% of vegetation and 10% of soil) for different
levels (top). The results after the application of the orthogonal equations for the
vegetation (CC1); soil (CC2) and crop marks (CC3) axis (bottom). The calculation of
these new spectral profiles was based on constrained linear un-mixing technique.
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and crop mark response. However, during period II and during period
III, soil is spectrally separated from the rest of the dataset. In addition,
during these periods crop marks are also distinguished from vegetation
(healthy cultivated areas), and therefore this can further improve the
interpretation of the images.

3.2. Vegetation type and spatial resolution

Additional concerns regarding the proposed equations are related
with the type of the vegetation cultivated on the ground surface, on
top of the archaeological features. As it was found from previous studies
(Agapiou et al., 2013b) both barley and wheat crops tend to provide
similar spectral characteristics. However, no other similar study has
been contacted for other types of crops or grass by others. Since each
type of vegetation is unique, it is expected to give a different spectral
profile. Consequently additional equations should be developed
specifically designed for these different types of crops. On the other
hand, in practice, stress vegetation is expected to behave in the same
way for any kind of vegetation (i.e. lower reflectance in the near infrared
part of the spectrum) so we might expect to observe similar anomalies
in the image. For that reason the proposed equations may also work
well for a variety of other types of crops/grasses that have similar spec-
tral characteristics as those initially used for the development of the
equations (i.e. barley and wheat crops).

Another critical aspect of the proposed equations is also the spatial
resolution of the image used. As it was mentioned earlier, “ground
truth” data were used for the development of the proposed equations
from ground spectroradiometer. Therefore these equations are de-
signed for “pure” pixels of soil, vegetation and crop marks. These pixels
are more likely to be observed in satellite datasets in cultivated areas
with high Leaf Area Index (LAI), and therefore have an almost complete
coverage with vegetation of the area under examination. In any other
case that the crops are not fully vegetated and the area is not fully cov-
ered with vegetation or even not fully cultivated, the phenomenon of
the mixed pixels might be seen. Consequently, the proposed equations
might not work well, when spatial resolution (pixel size) of the satellite
sensor is not enough to distinguish cropmarks from the background. In



Fig. 8. Linear coefficients of the orthogonal equations for different sensors. GeoEye sensor
was used as reference sensor.

Fig. 9. The prehistoric landscape of Stonehenge as recorded fromWorkdView-2 after the applic
component (c); NDVI index (d); NIR-R-G (e); R-G-B (f); 1st PC (g); 2nd PC (h) and 3rd PC (i).
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this case “pure” elements are “mixed” in the satellite image and there-
fore a “mixed” pixel (mi-xel) is recorded.

Fig. 7 (top) indicates the spectral behaviour of mixed pixels
(with dashed lines) compared to pure vegetation (green line) and
soil (red line) targets. The calculation of these simulated spectral
profiles was based upon linear constrained spectral un-mixing
technique (Ritter and Urcid, 2011). As it is demonstrated the cover-
age of vegetation (i.e. high LAI index) is essential in order to have
“truth” spectral behaviour of the vegetation. Fig. 7 (bottom), indi-
cates the results for the soil; vegetation and crop mark axis after
the application of the orthogonal equations for “pure” vegetation
target, as well as mixed with soil in different percentages.
3.3. Atmospheric effects and spectral characteristics of the sensor

The orthogonal equations should be applied in radiometric corrected
images. Therefore the digital numbers of the image need to be convert-
ed into radiance based on the calibration files of each image (i.e. meta-
data file).Moreover, radiance to reflectance correction is needed. At this
ation of the orthogonal equations by crop component (a); vegetation component (b); soil



Fig. 10. Relative difference between “crop marks” and “vegetated” areas for different algorithms applied in the case study of Stonehenge.

797A. Agapiou / Journal of Archaeological Science: Reports 14 (2017) 792–799
stage it is very important to evaluate and correct the atmospheric con-
ditions of the image at the time of acquisition. Atmospheric effects
such as scattering and absorption can also influence the final results
after the application of orthogonal equations. The removal of the atmo-
spheric effects is an important pre-processing step required inmany re-
mote sensing applications, since it is needed to convert the at-satellite
spectral radiances of satellite imagery to their at-surface counterparts
(Bastiaanssen et al., 2000; Kaufman and Sendra, 1988).

Atmospheric effects for both spectral signatures as well as for vege-
tation indices have been discussed in the literature since the 1980s
(Duggin and Piwinski, 1984). Atmosphere is a principal source of
noise in all applications of optical remote sensing using satellite
datasets. These errors, caused by atmospheric effects, can increase the
uncertainty of the final results up to 10%, depending on the spectral
band under investigation. Recently Hadjimitsis et al. (2010) has
highlighted that non atmospheric correction of the satellite data can
even increase the inaccuracy of several vegetation indices such as the
NDVI. This uncertainty might reach up to 18%. In another study
(Agapiou et al., 2011) the mean differences of 15% between the atmo-
spheric and non-atmospheric corrected values for NDVI index have
been also recorded.

Satellite sensors have similar spectral characteristics but these are
not exactly identical. Since the spectral characteristics of each sensor
are different due to different RSR filters, orthogonal equations had cal-
culated separately for each sensor. Fig. 8 presents the variations of the
linear coefficients for the crop mark component. The GeoEye sensor
was selected as the reference line. As it is indicated similar spectral re-
sponse it is expected between the sensors but some difference still ex-
ists. Variations between the Landsat sensors (7 ETM+ and 4 TM) are
also recorded. These dissimilarities are also known from previous stud-
ies indicating the spectral resolution and the spectral characteristics of
the sensors (Agapiou et al., 2014).
4. Applications of orthogonal equations

In order to evaluate the orthogonal equations in other areas beyond
theMediterranean region, we have tested them in thewell-known pre-
historic landscape of Stonehenge (UK). The site -a UNESCO World
Heritage monument- was selected since here the first known photo-
graph from above using a balloon was taken in 1906 by Lieutenant
Philip Henry Sharpe of the Royal Engineers' Balloon Section, marking -
in a way- the beginning of what is known today as “remote sensing ar-
chaeology”. The site has attracted the interest of many researchers over
the years while remote sensing applications have been already
contacted in this landscape (e.g. De Smedt et al., 2014; Pearson, 2015).

Two different datasets have been used as an example of the applica-
bility of the proposed orthogonal equations. One very high resolution
WorldView-2 image (overpass at 2015-04-09) with spatial resolution
of 2 m and one medium resolution Landsat 5 TM (overpass at 2011-
09-28) with spatial resolution of 30mwere used. Fig. 9 presents the re-
sults of the orthogonal equations (a–c) as well as the NDVI and pseudo
colour composites applied in the WorldView-2 image. In addition the
first three principal components are shown in Fig. 9g–i. As it is demon-
strated by the results visual interpretation can be improved for the ex-
posure of crop marks after the application of the orthogonal equations
especially in the vegetation component application. It is important to
see also the improvements of the image in areas that tend to give low
NDVI values (Fig. 9d black squares). In these areas both crop and soil
component (Fig. 9a and c) can enhance the initial image indicating the
boundaries of these areas in contrary to NDVI and pseudo colour com-
posites (Fig. 8d–f). Some crop marks that are difficult to be observed
in these images and are improved after the application of the orthogonal
equations are indicated with arrow in Fig. 9a. The 1st PC (Fig. 9g) is able
also to enhance the crop marks in this area compare to the rest of the
PCs (Fig. 9h–i). PCA analysis has been proven to be able to enhance



Fig. 11. The prehistoric landscape of Stonehenge as recorded from Landsat 5 TM from orthogonal equations, vegetation indices, PCA analysis, and Tasseled cap transformations.
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and improve the raw images although in some cases from previous
studies PCA can over-saturate the image under investigation (Agapiou
et al., 2013a).

Quantitative analysis for the abovementioned algorithms in order to
examine their performance for the enhancement of crop marks is pre-
sented in Fig. 10. For the estimation of this analysis more than 500
points have been collected from the image both from areas character-
ized as “crop marks” as well from the rest “vegetated” areas. Then the
values where normalized based in their standard deviation and finally
their relative difference was calculated. As it is demonstrated crop and
soil component where able to enhance more than 100% the relative dif-
ference between crop marks and the vegetated areas. In general all the
algorithms were able to enhance the image (i.e. more than 20% relative
difference).

Results from themedium resolution of Landsat 5 in the same archae-
ological site are demonstrated in Fig. 11. In spite of the poor results that
are recorded mainly due to the spatial resolution of the image, some
“anomalies” can be seen in the image after the application of the crop
mark component (Fig. 11, red squares). Even though the improvements
of the technology regarding the space sensors and the improvements
seen in the spatial resolution of multispectral images, the Landsat series
still remains a very important dataset due to the fact that can provide
systematic data since 1972. Therefore, orthogonal equations can be
used in these datasets as well (using the appropriate coefficients) in
an attempt to recover useful information for the landscape of an area.
Vegetation indices and false composites do not improve any further
the initial image highlighting the difficulties that many researchers af-
front in working with an “unknown” landscape. Tasseled cap and PCA
analysis were able to enhance some of the crop marks in the Landsat
image but in all cases the results but with some problematic aspects
as well (i.e. over saturation of the initial image). For instance, PCA anal-
ysis was able to detect the southern crop mark only while the results
from the 1st component of Tasseled cap exhibit the low Signal-to-
Noise Ratio (SNR) and therefore hinders the interpretation of the data.
In the case of the crop component the crop marks were able to be de-
tected as indicated in the Fig. 11. Of course the spatial resolution of
the image prohibits the detail recognition of the crop marks as in the
first case of WorldView-2 case study.
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5. Conclusions

This paper aims to present the applicability of orthogonal equations
for the detection of crop marks in areas beyond the eastern
Mediterranean region. These equations have been recently proposed
in the literature in an effort to intensify crop marks through interpreta-
tion of multispectral satellite datasets.

Further to the utility of the proposed orthogonal equations and their
testing in different archaeological environments, the paper highlights
some limitations and quotes some considerations regarding the usabil-
ity of these equations, including the impact of atmospheric effects, the
phenological stage of the crops as well as the characteristics of the sen-
sors. Two examples using bothhigh andmedium resolution satellite im-
ages in the case study of Stonehenge are also presented.

It should bementioned however that detection and interpretation of
crop marks is not necessarily related to the detection of archaeological
remains. Crop marks are currently used as a proxy for the detection of
buried archaeological features which can be confirmed only after an
in-situ archaeological investigation and excavation. However, studying
and analysing crop marks though satellite datasets, allows archaeolo-
gists and researchers to examine in large areas the archaeolandscape
and to identify possible potential “interesting” areas that are worthy
of further investigations and/or protection.

Future study is expected to carry out for improving the orthogonal
equations by minimizing atmospheric effects (i.e. atmospheric resis-
tance orthogonal equations) and also minimizing phenological
variations.
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