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ABSTRACT

When preparing high dynamic range images (HDR) for dis-
play on standard monitors, it is often necessary to make a
choice between global and local tone mapping. While the
former is simple and efficient, it may fail to reproduce details
in high contrast image regions. Although, the latter can better
reproduce details in such regions, it often comes at the cost
of increased complexity and computational time. In this pa-
per, we present an algorithm that combines the best of both
approaches. We perform local tone mapping only in high fre-
quency image regions where the visibility of details can be
an issue. In low frequency regions, we employ global tone
mapping to save computational resources without degrading
quality. Our algorithm is most suitable for tone mapping op-
erators (TMOs) that utilize the concept of local adaptation
luminances.

Index Terms— Tone mapping, high dynamic range imag-
ing, GPU, real-time.

1. INTRODUCTION AND MOTIVATION

With increased use of HDR images in various application ar-
eas and relatively slow progress in HDR display technology,
tone mapping remains to be a very important problem. Dur-
ing tone mapping, the user is generally presented with two
choices: (1) use a fast and simple global operator which, in
overall, conveys the general appearance of the scene but might
lose small scale details; (2) use a more complex and compu-
tationally slower local operator, which preserves small scale
details but may fail to convey the overall appearance as good
as the global operator. We argue that this choice can be cir-
cumvented if one combines the strengths of both types of op-
erators while avoiding their weaknesses. To understand how
these two types of operators can best be combined we ana-
lyzed various HDR images tone mapped with global and local
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operators. We focused on which parts of the images exhibit
the greatest difference when tone mapped with global and lo-
cal operators. To this end, we used the dynamic range inde-
pendent image quality assessment metric (DRIM) on pairs of
globally and locally tone mapped images [1]. Figure 1 (a) de-
picts a representative result of our analysis. Here, the green
pixels indicate the regions where contrast is visibly lost by
global tone mapping but would be preserved by local tone
mapping. This is confirmed by the close-up view in (b) where
the top image shows the local result and the bottom image
the global result. The gray pixels in (a) indicate that a human
observer would not be able to perceive contrast changes be-
tween these two types of operators. Using the local operator
in these regions would not bring additional benefits over using
the global one. One can use the DRIM to determine the image
regions which would benefit from local tone mapping. How-
ever, this would be counter-productive since the run time cost
of this metric generally outweighs that of a local operator. As
such, one needs to find a simpler function that approximates
the output of the DRIM, but has a much lower computational
cost. After experimenting with several such functions, we
found that the Sobel edge detector [2] applied on the original
HDR image yields a surprisingly similar output to that of the
DRIM (Figure 1 (c)). Two further results supporting this find-
ing are shown in Figure 2. The similarity may be explained
by the fact that the sobel filter is detecting gradients which is a
measure of contrast and DRIM itself has a contrast detection
process. Based on these observations, we decided to identify
the image regions that require local treatment using the Sobel
edge detector.

2. RELATED WORK

In the past several TMOs have been presented, and an exten-
sive review can be found in [3, 4]. Hardware implementation
of TMOs, tightly coupled with the current graphic hardware
and FPGA'’s, have been presented in the past as well [5, 6,
7, 8]. In this section we will review only the works that are
closely relevant to our study. The idea of using local adap-
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Fig. 1. (a) DRIM [1] result where green regions indicate visible loss of contrast due to global tone mapping. (b) edge detection
result using the Sobel operator. We used the 85" percentile of gradient magnitudes for marking edges.
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Fig. 2. Comparison of the DRIM vs Sobel edge detection.
Note that while the outputs are not identical there is a high
degree of similarity. The close-ups show the difference be-
tween local and global tone mapping in marked regions.

tation luminance for tone mapping has been explored in sev-
eral studies. These approaches either use difference of Gaus-
sians as a measure of uniformity [9, 10, 11] or image seg-
mentation [12, 13, 14, 15, 16] to localize the largest pos-
sible neighborhood around each input pixel. Then the local
adaptation luminance is computed as the average luminance
of this neighborhood. These techniques are not computation-
ally efficient due to the use of complex filtering or segmenta-
tion approaches and in some cases they require to solve large
linear systems [13]. Segmentation suffers from banding ar-
tifacts due to the need of precisely identifying the transition
between bright an dark areas [14]. This can be eliminated,
but further processing is required [14, 15, 12]. Efficient uses
of bilateral filtering to the tone mapping problem have been
presented [17, 18]. However, they may have memory man-
agement problems [17] and show artifacts when the bilateral
filter is behaving as a pure Gaussian filter [18].

3. ALGORITHM

Our algorithm is comprised of three stages namely identifica-
tion, marking, and tone mapping.

3.1. Identification

This step identifies the image regions that require local tone
mapping. We simply define these regions to be the high fre-
quency regions as detail loss due to global tone mapping is
most severe in these regions. Based on our experiments, we
find that a sophisticated algorithm for detecting such regions
is not required; it is possible to use a simple edge detector for
this purpose. Therefore, we use the Sobel edge detector ap-
plied on the luminance channel of the input image. Once the
gradient magnitude map is generated, we threshold this map
to only keep the strong gradients. The value of the threshold
varies between 0 and the highest gradient magnitude com-
puted by the Sobel filter; 0 means that the local operator is
applied on all pixels of the input image. Increasing the thresh-
old level reduces the number of pixels that are marked for
local treatment (Figure 3). In practice, setting this threshold
around the 85™ percentile of the gradient magnitudes yields
good results.

3.2. Marking

Marking step is only necessary in the GPU implementation
of our algorithm in order to discontinue the processing of the
non-identified pixels in the rendering pipeline as early as pos-
sible. In theory, this step requires a simple conditional con-
structor. We have experimented with several approaches such
as branching and texkill instructions, a tiling approach, and
using the early Z test. We found that using the early Z buffer
gives the best solution as it needs no additional logic and pre-
vents processing of all fragments that fail the early Z test. To
accomplish this, the output of the identification step is written
to the depth buffer and an early Z test is performed to mask
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Fig. 3. Effect of the identification threshold: (left) 0.1 - (right)
1.0. Bottom row, the more pixels identified results in better
reproduction of details.

out fragments which are not identified as high contrast'. To
make this step more efficient, we make use of hi-Z, where the
depth test is conducted on a tile basis.

3.3. Tone Mapping

The shader that is responsible for computing the local adap-
tation luminance makes use of the early Z buffer, and it is ap-
plied only on the pixels that pass the early Z test. The output
of the complex shader is the computed local adaptation lumi-
nance. Afterwards, the global tone mapping curve is applied
on all pixels by using the adaptation luminance computed for
the identified pixels and the original luminance for the others.

4. RESULTS

We have performed a series of quality experiments between
the ground truth and the output of our approach using differ-
ent types of quality metrics. The ground truths are obtained
by applying local luminance adaptation on the full image.

4.1. VDP and SSIM

The visual difference predictor (VDP) metric attempts to de-
velop a general visual model for complex images [19]. As
output it gives the percentage of pixels that are perceivably
different according to the human visual system (HVS). Based
on the fact that the HVS has the property to highly adapt to
extract structural information from the viewing field, we have
also used the structural similarity index (SSIM) as another
metric in our comparison [20]. SSIM reports the degree of
similarities between the two images in the range [0, 1] with 1
meaning perfect similarity and 0 complete difference. Table 1
presents the results of applying these two metrics to compare
our results with the ground truths. In the case of the VDP met-
ric, the numerical values are percentage values. As it shown

!t is a hardware optimization that is enabled through the use of the depth
buffer.

HDR Image | VDP | SSIM
16RPP | 0.04 | 0.9968
Memorial | 2.41 | 0.9876
Nave | 1.47 | 0.9761
Rosette | 0.38 | 0.9982
Belgium | 0.21 | 0.9853
Desk | 2.72 | 0.9925
FogMap | 0.07 | 0.9925

Table 1. Results of the quality comparison using
the VDP and SSIM. The HDR images are taken from
http://www.anyhere.com/gward/hdrenc/pages/originals.html.

Fig. 5. Comparisons: (left) ground truth, (center) our and
(right) DRIM outputs.

in the Table 1, this value is between 0.04 and 2.72 percent.
This represents a very limited number of pixels that are per-
ceived as different by the HVS with respect to the ground
truth. On the other hand, the SSIM shows that the measure of
the structural information change is minimal in all cases. This
confirms the high degree of similarity between our results and
the ground truth.

4.2. Dynamic Range Independent Quality Assessment

Recently Aydin et al. [1] introduced a novel metric, called
DRIM which is capable of operating on image pairs of im-
ages with different dynamic ranges. This metric uses a model
of the HVS and introduces a new definition of the visible
distortion based on the detection and classification of visible
changes in the image structure. Different types of changes
measured by this metric are visualized using different colors:
green for loss of visible contrast, blue for amplification of in-
visible contrast, and red for reversal of visible contrast. The
results obtained by using the publicly available implementa-
tion of this metric are shown in Figures 5. As this figure shows
the results of our algorithm and the ground truth are very simi-
lar except a few small isolated regions. Finally, in Figure 4 we
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Fig. 4. Intensity profile comparison of the ground truth (red), our approach (green) and of the HDR input image (blue) for
scanline 300. The close-ups show columns 1-80 and 380-520 respectively.

compare the intensity profiles of the proposed method (green)
with the ground truth (red). The close-ups show the similar-
ity of the scanline profiles between the ground truth and the
proposed method.

4.3. Timing Performances

Next, we show the computational performance results. First,
we show the run time in frame per second (FPS) of our re-
sults varying the edge threshold value and the input frame
resolution in Table 2. Second, we show the run time of the
proposed method compared with the ground truth (full local
operator), and the global operator varying the input frame res-
olution in Table 3. We used Ashikhmin’s TMO to generate
both tables [9]. The HDR image used is shown in Figure 6.
Both experiments were run on an Nvidia GTX560M. As can
be seen from these tables, by using our method, one can reach
interactive frame rates even for very high resolution HDR im-
ages. As expected the performance of our algorithm lies be-
tween that of the global and local methods.

Frame | 97® [ 87% | 771
5097x2889 | 6 5 5
172 | 23 21 18
/4| 72 | 68 55
1/8 | 207 | 194 | 167

Table 2. Run time of the proposed method (in FPS) for dif-
ferent image resolutions and edge thresholds (in percentile).

5. CONCLUSIONS

We developed a novel technique to address the preservation
of local contrast and details while keeping lower computa-
tional costs and complexity. Local tone mapping operators

Fig. 6. Image used for the performance experiments.

Frame | Global | Ground truth | Ours
5097x2889 12 1 5
12 37 7 18
1/4 136 25 55
1/8 420 87 167

Table 3. Run time varying the resolution of the input frame
for the global, local and our operators. The edge threshold
value used for our operator was 77™ percentile.

tend to be applied on the whole image regardless the informa-
tion contained in the HDR input image. As a result the com-
putational costs are prohibitive for very large HDR images
and textures. Our algorithm is based on the simple concept
of detecting high frequency image regions and applying local
tone mapping only in these regions. This allows us to save
computational resources without degrading image quality. In
our experiments, we have not seen any need for blending be-
tween locally and globally tone mapped regions. We attribute
this to the fact that we use the same TMOs local and global
components. If one mixes and matches different operators,
blending could be needed. In this case, smoothing of the edge
map by a low-pass filter could be satisfactory.
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