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Recent work on localized buckling with different core bending theories in sandwich struts is adapted
for a sandwich beam-column that combines the effects of bending and compression. The two distinct
bifurcations present in the pure compression case are replaced by a single pitchfork bifurcation point
that combines local and global buckling behaviour. Several models with a various number of degrees
of freedom (DOFs) are developed to account for the explicit effect of end moments. All models are
formulated using total potential energy and variational principles, which are used to derive the governing
equations that are solved using the numerical continuation package9¥Y. Results are validated with

a finite element model formulated in the commercial packageus. Comparisons with the interactive
buckling profiles and the mechanical response in the nonlinear range are very favourable and the models
with more DOFs are determined to be superior.

Keywords nonlinear mechanics; buckling; composites.

1. Introduction

Sandwich construction is a popular provider of structural strength combined with weight efficiency
which is used extensively in astronauti€ofiyalamet al, 1996, aeronautic Banninket al, 1978

Duthie, 1987, marine Knox et al, 1998 and in civil engineering applicationsdétergaard2008.
However, precisely because it is both specialized and efficient, the response under certain types of load-
ing is liable to exhibit complicated collapse mechanistdsirt et al, 1988 Hunt & Wadeg 1998
Sokolinsky & Frostig 1999. It is well known from the work of Allen (1969 that compressed sand-

wich panels sometimes fail by a combination of overall (Euler) buckling and local buckling (wrinkling)

of the face plates.

Previous work on sandwich struts under pure compression has revealed different stages in the load-
ing history. Initially, pure squashing is observed followed by Euler buckling that proceeds to interactive
buckling where the structure becomes unstable (Eigand localization is clearly observetVadee
1999. This type of structural response has been modelled analytically using a combination of nonlinear
structural stability and Timoshenko beam (TBT) theories that allows the development of shear strains
within the core material. These shear strains are vital in the nonlinear interaction of the overall buck-
ling wavelength scale and the local buckling ‘strut on elastic foundation’ wavelength state &

Wadee 1999. Further work on interactive buckling in sandwich struts considered sensitivity to im-
perfections \Wadee 2000, face—core delaminationMadee & Blackmorge2001 Wadeg 2002 and
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INTERACTIVE BUCKLING IN SANDWICH BEAM-COLUMNS 147

FiG. 1. Photographs of an experimental sandwich panel under axial compre¥gimed 1999. From left to right: pre-buckling
followed by overall buckling and subsequent interaction between overall and local buckling modes leading to localization.

struts with differing face plate thickness&¥gdee & Sindes da Silva2005. Recently, the mechanical
model of the sandwich struts was improved further by implementing a higher order bending theory, th
so-called Reddy—Bickford Theory (RBT), which releases the constraint of plane cross sections remaing
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ing plane and allows nonlinear in-plane deformations to develop in the core. This formulation was vali- =.
dated using a finite element (FE) model exhibiting excellent agreement with the post-buckling respons e%
and corresponding deformationd/gdeeet al,, 2010. §

In spite of significant progress, these works have focused only on the pure compression case. Thg
work by Wadee & Sindes da Silvg2005 on panels with differing face plate geometries highlighted the %
sensitivity to initial imperfections in geometry but with the limiting requirement that the axial loading 3
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to be offset from the neutral axis, hence converting the strut into a member that combines axial loads>
with uniform bending, a so-called ‘beam-column’. Earlier works on beam-columngdaleet al,
1979 Fazioet al, 1982 provided information on critical loads and deflected shapes; the current work
extends this to include nonlinear interactive buckling. Since this type of loading is relatively common in ‘5
practice, the current work gives designers further valuable information on the residual strength capacnﬁ
after any structural instabilities have occurred.
The current paper begins with the adaptation of the two strut models, one for TBT and the otherS
for RBT, described iWadeeet al. (2010, to take into account the change in the work done due to the &
eccentric axial force. Two further submodels are developed, where the effect of pure bending is take®
into consideration in the displacement functions for the overall behaviour. The models are formulated=.
analytically and the resulting governing equations are solved numerically using3v (Doedelet al,,
1997 for a number of panels with different properties. The resulting equilibrium paths and correspond-
ing deformations are presented with discussions of the destabilizing effects and are validated usin
a fully numerical model created with the commercial general purpose FE padi&d@uUsS (2006.
Conclusions are then drawn.

q 8860.9/9
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2. Analytical modelling
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The formulation for a simply supported sandwich beam-column panel under axial loading applied offsetg
from the panel neutral axis is presented. The panel is modelled as two thin face plates with Young’s mod=s
ulus E and Poisson'’s ratio separated by a soft linear elastic and orthotropic core material of Young'’s
moduli Ex and Ey with respective Poisson’s ratiog andvy, shear modulu&¢ and the dimensions
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FIG. 2. The sandwich panel in elevation and cross section, ‘NA represents the panel’s neutral axis for bending. The lower diagram
shows the equivalent combination of axial loBdand external momeri.
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FIG. 3. Equilibrium paths of loadP versus end-shortening Paths (a)—(c) apply to the sandwich strut only with path (d) for the
beam-column only. (a) Initial pure squash fundamental path F to the critical point C; (b) overall buckling path to the secondary
bifurcation S; (c) path of interactive buckling; (d) represents the equilibrium path with the single bifurcation point marking the
onset of interactive buckling.

shown in Fig.2. If P is acting at mid-depth, then the force is coincident with the panel neutral axis for
bending and reflects the purely axial problem. In that case, the equilibrium path is expected to consist
of three clear stages: the pure squash fundamental path F as shown3(aFigntil a critical loadP®
is reached beyond which buckling in the overall mode is observed as shown B(IBig-inally, this is
followed by a secondary bifurcation S in which the face plate under greater compression buckles in a
localized mode leading to a highly unstable post-buckling response as shown &idrig-he analysis
of the purely axial loading case was originally addresseHibyt & Wadee(1998.

As the applied force moves away from the neutral agist(0) towards one of the two face plates,
end moments are initiated that provide a bias for the overall buckling mode since one face plate becomes
more compressed than the other. This eccentreettansforms the equilibrium path of the structure to
a one with a single point of instability that still bears the hallmarks of a pitchfork bifurcation problem
(Glendinning 1994). This new path has a reduced limiting loR#, below the critical load for the pure
strut PC, with increasing eccentricity as sketched in ().

2.1 Displacement functions and generalized coordinates

The deformation system of the model is described through displacement functions and generalized co-
ordinates, which are shown in Fig.and discussed below. The displacement functions are utilized to
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INTERACTIVE BUCKLING IN SANDWICH BEAM-COLUMNS 149

FIG. 4. Top: overall sway mod®&/(x); middle: overall tilt mode&)(x); bottom: local modesi(x) and w(x) becoming non-zero
beyond the second bifurcation.

formulate the total potential energy that is subsequently minimized with respect to the generalized
coordinates, yielding the governing equations. Beginning with the overall mode, this is decomposed int
independent “sway” and “tilt” components to allow for the development of shear strains in the core:

W(x) = gsL sin%, 0(x) = qiw cos”—LX, Q)

9% 1./1./9/ poensTe-sjoiesewewi/wod dnooiwapese)/:sdpy Wolj papeojumoq

wheregs andg; are the dimensionless generalized coordinates that describe the amount of sway and tilt3
respectively. Generally, shorter wavelength secondary buckling is described by two fungtiprsd
w(x), for the in-plane and transverse displacements, respectively, of the more compressed face platé
Allowing these two functions to remain initially unknown, they are free to choose their minimum energy &

860

configuration. In the core, both andwc vary linearly iny to zero at the top, less compressed face plate: S
b-2 b-2 ;é

_ — 2y . —zy =3

Uc(X, y) = ( 5 )U(x), we(X, y) = (—2b )w(X)- 2) i

<

o

The linear distribution is kept even though for one of the bending models discussed below, a nonlinear;
displacement field through the depth of the core is assumed. Sensitivity studies conducted during th%
numerical investigation suggested that a nonlinear distributigrdial not change the numerical results
significantly. Finally, the quantity! is the generalized coordinate accounting for the compression along
the neutral axis of the panels due to the application of axial load, and its major role is to allow for pre-
buckling compression. Moreover, in the post-buckling ranigallows for some of the compression to

o Jesn ABojou

be released into bending displacements and therefore gives a measure of the average end compression

during the nonlinear buckling process. ;
3

2.2 Energy formulation §
o

The current paper initially presents two mechanical models with different bending theories. The first
one, developed byHunt & Wadee(1998, is based on a TBT approach that allows the development of
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constant shear strains across the depth of the beam. Using a similar philo¥dgudhseet al. (2010 re-

laxed the constant shear condition by utilizing the higher order Reddy-Bickford bending tRecigy(

1984 1990, which is more applicable for deeper beams since it allows for the development of nonlin-
ear (cubic) in-plane deformations in the core. The potential ene€rdgr each of the two models is
presented currently highlighting the differences. Henceforth, the abbreviation ‘TBT’ will be used to re-
fer to the model based on the one presenteHunt & Wadee(1999, while ‘RBT’ will refer to the

more recent model based on the one presentéd/adleeet al. (2010. As far as the deformation fields

of each model are concerned, the vertical deflectitfiig) are the same, whereas the difference lies in
the overall in-plane deflectiouy:

a3 .
UgT(X, Y) = —yO(X), Ugr(X,y) = —yO(X) — 3—Z2(W — ), 3)

where the cubic dependence gris obvious for the RBT model. Note that subscripts T and R refer

to the TBT and RBT models, respectively, and dots denote differentiation with respectte total
potential energy of the systems consists of the strain energy stored in the sandwich panel minus the work
done by the loads, integrated over the volume of the structure. The strain energy has three components
of which two are for the face plates in terms of bending enddgyand membrane energyn,. The

third component concerns the strain energy stored in the core and consists of contributions from axial,
transverse and shear straihs The work done by the loads include the usual component from the axial
load P and a new component from the induced end monMniThe derivation of the total potential
energy is given in detail below for both bending models.

2.2.1 Bending energy. The bending energy arises from the overall bending of both face plates and
a contribution from the local bending of the more compressed face plate due to local buckling. The
expression is the same for both TBT and RBT models:

El (Y h 5
Ub=7/ (W2 + %) dx, 4)
0

whereE | is the flexural rigidity of one face plate about its local minor axis of bending, h&rce-
Ect®/[12(1 — v?)].

2.2.2 Membrane energy. The membrane enerdym accounts for the axial tension and compression

in the face plates. Assuming the sandwich panel bends or buckles upwards, the top face plate contributes
the axial tensile strain minus the squash term. Similarly, the bottom face plate contributes the compres-
sive axial strain, the squash component and extra contributions from &orél large-deflection plate

theory to account for any deviation from the overall mode. Since the two models have different in-
plane deformation fields in the overall mode, the axial strains for each model would be different. The
expression for membrane energy is:

L
Um =D /O (€2, + %) dx, (5)
whereD = Etc/2. The axial strains for the face plates are given below. For TBT:

b. b. o1
Ext,T = —59 — 4, expT= 59 —Ad4+Uu+ EU)Z- (6)
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For RBT, some extra terms are introduced due to the nonlinear deformation field:
b. b . . b. b . . 1
=—=0—=-(W-0)—4 =04+ —-(W—=0)— 4+0+ Zw? 7
Ext,R 2 6( ) > €xbR > + 6( ) + U+ Zw ( )
Hence, the total membrane energy for TRIx{T) is given by substituting the expressions fgf 1 and

exh,T fOr ext andexp, respectively, intog). Similarly, for the RBT model, the membrane enerby,(r)
is given by substituting the expressions fgf r andexp r for ext andeyp, respectively, intog).

2.2.3 Core energy. The core is assumed to behave as a 2D orthotropic elastic solid. The core strain 3
energyUc consists of contributions from axial, transverse and shear strains integrated over its volume:

b/2
/ / o [ AR )(Exg§+ Eyed + 2vxEyexey) + GCCyXZy:| dy dx. (8)
oy

The transverse straiy is the same for both models:

8wc
ey = vxd + — 9
y=vxd+ S5 (9)
where the first term removes some spurious terms due to the presence gfitiherm inUc. The axial
and shear strains differ for the two bending models because of differences in the deformation field:

: ) 1. ou
gx’Tz—yH—A+uC+§w§, xy.T =W — 9+wc+—y° (10)
.4y . 1. . ou ou
ex,R(X, y) = —y0 — 3_i;2(W —0)— A4+ U+ Ewg, Ixy,R =W+ a—yg + we + —yc (11)

Hence, the total core energy for TBU( 1) is given by substituting the expressions fQrr andyxy, 1
for ex andyyy, respectively, into equatior8). Similarly, for the RBT model, the core enerdy(Rr) is
given by substituting the expressions {QIr andyxy r for ex andyxy, respectively, into equatiors).

2.2.4 Work done and total potential energyThe work done contribution has two components: one

accounts for the direct action of the axial loRdand the other accounts for the external monint
introduced by the eccentricity of the axial load such thlat= Pe. The work done by the axial load is
defined by the load multiplied by the corresponding end shortehimdile for the moment it is defined
asM multiplied by the corresponding end rotatiéh The work done expression is the same for both
models due to their identical boundary conditions:

L 1 rx 1. T U
PE+ MO =/0 = |:(§q327120032 T —5U+ A) + e(2qIE - 5)} dx. (12)
The potential energy functions for each model are given below:

Vr =Up+UnT+UcT — (PE+ MO), (13)

VR:Ub+Um’R+UC,R—(P€+M@). (14)
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The detailed expressions fof, the pure compression cases can be founWadee & Hunt(1999

for the TBT case, antiiVadeeet al. (2010 for the RBT case. The only real change being caused by
the inclusion of theMq; term in the work done, which essentially changes the problem from a two
bifurcation point problem to a single bifurcation point problem with a non-trivial fundamental path that
introduces uniform bending before the instability. For clarity, henceforth, some material and geometric
constants have been grouped together such that:

_ Gche Exbc Eybc 2Cy b

— E— = — k:— = —. l
2 7 T T 2 —wy) YT 2(L—vwy)’ 2 ¢ (15)

G
It is worth noting that the coefficients in the membrane strain terms of the bottom face pl&eximd(
(7) concerned with the overall mode, and the lower limit of integrationyfam (8), could be altered
to includew. This would have the effect of incorporating the change in the depth of the cross section
that would occur with the introduction of localized buckling of the bottom face plate. Moreover, local
deformations in the top face plate also resulting from the interactive buckling process could also be
included to reflect the physical behaviour more accurately. To achieve this, two additional displacement
functions similar tow andu, defined above, would be necessary for the top face plate, which would
in turn introduce two further ordinary differential equations (ODESs), probably a fourth order and a
second order, respectively, into the system. The introduction of more nonlinear terms and displacement
functions, which would naturally occur as a result of these additional features being incorporated, would
not have a significant effect until the local deflections become very large at which stage other important
sources of nonlinearity, such as from within the cdfeiit & Wadee 1998 Gibson & Ashby 1999
and from plasticity, would also take hold. However, inclusion of these aspects would have the effect of
complicating the model considerably without commensurate gain in practical information; hence, they
are not incorporated currently and are left for future work.

2.2.5 Linear eigenvalue analysis for overall bucklingThe critical buckling load for each model for
the pure compression cadd (= 0) can be obtained through linear eigenvalue analysis as described in
Hunt & Wadee(1998):

©+%)

2G + ¢2r2 (D + %)

27 2E|l
PE = =+ 2Gr%¢?

(16)

e _ 272El  840Gm2¢2(Cx + 6D) + Cyz*$*(Cx + 20D)
R™ L2 30(168G + 17Cx¢212 + 70Dp27 2)

The first terms in each expression relate to the load of the face plates buckling independently. The other
terms consist of the contributions from the face plates bending about the global neutral axis of the panel.
The RBT critical load PF?) is always marginally greater than the TBT critical |oaa$) since the
nonlinear in-plane strain distribution increases the threshold for buckling. Both expressions, however,
closely agree with the classical resultadfen (1969 for panels with thin face plates and relatively weak
cores.

2.2.6 Governing equations. The total potential energy, whether it is equal td/r or Vg, is an
integral with £ being the integrand. For equilibrium to be satisfied, the total potential energy must be
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stationary which requires the first variation\éf 6V, where

L

oV = / (a—€5zb %510 %&0 + %5u + %w) dx, a7

o \Jw ow ow

to vanish Fox, 1987). Following the procedure of applying the calculus of variations presentedrir
& Wadee(1998 involving integrating by parts to minimiz¢€ for all 6w anddu, it turns out that pinned
supports are acceptable boundary conditions, where the local lateral deflection and curvature at the en
i.e.w(0), w(L), w(0) andw(L) are zero. Moreover, the following in-plane boundary conditions are also
given:
M
B
wherexg = 0 andxp = L; physically, this can be obtained by matching the strains from the loads at
the ends. Subject to the above boundary conditions, the conditios- 0 is satisfied by the Euler—
Lagrange equations that yield two coupled nonlinear ODEs, a fourth order OREaind a second
order ODE inu. Moreover, wherV is minimized with respect to the three generalized coordingfes
gt and 4, three further equilibrium equations are determined that connect the generalized coordinate$.
to the displacement functions. Note that there is nothing particularly special in the terms in braces with®
subscripts T and R in the following equations, apart from that the expressions that they are equal to, of
their right-hand side, are reused for conciseness in Sedthe system of equations for the TBT
model is presented first:

20(Xo) (D + %) + w2(Xo) (D + %) = A2D 4+ Cx — Cy(1 -] — (18)

wewy/woo-dno-ojwepeoe//:sdny Frol pepeojumoq

. X X
(Eli)y = —D [2Aa> + quopr (sm”Ta; + % cos”Tu)) — (20 + 200 + 3w2a>)]

2 1 1 3 2,
—Cy [émo - (Euw + Ui + gw%) n qt% (sm”—LXzb + % cos”—LXw)} — kw

: 2
_ CLUX Eww - %vxdblb - (u - %wz)] -G |:E - %w + (gs — ) ﬂTsinn—LX] ,

(19)
. Cx _ G(fw wu Cx\ .. Cyvx .
[20(0+3)] =5 (3-5) - (o %) w5
C 242
—~ 5 cosT= [G(qs o) — (D + f) i 2¢ qt} : (20)
(P) _ 2r2%El L2, b4t /L c0s™ (i — 2 ax (1)
T— L2 qs qS qt L o L w b >

+
v
»[%

2

M X
{E}T: —¢(Qt Os) + (?

7 . ax (. ? G X (. 2u
__/ [( F)EsmT(u+7)+§COST(w_F)]dX’ (22)
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P D st 1 Cyx — Cyv2 1
 — 42D —_Ccdy 2 14 T2 XYY Mg o 2002 . 2
5 (2D + Cx — Cyvy) L/o [(u+ S )—I—( D u+3w dx (23)

The following system of equations is derived from the RBT formulation, with the equilibrium equation,
0VR/04 = 0, being the same ag3):

2
. X X
{El%}g = —D |:2Azb + (200 + qs)¢” (sm—” b+ = cos—”L w) — (201 + 2iinb + 3zi)2iz')):|

3 L L
2. 3.,. 1 .. .. $r% . mX. =® TX .
CX|:3w 5ww 2(wu+wu)+(qS+4qt) 30 (Slan+LCOSLw):| kw
Cy |2.. R 2. U 212 7x
—va{é[w(w—vxdb)]—(u—ﬁw)+G|:§w—5—(q5—qt)3—LSInTj”,
(24)
.. Cx Cy . ¢7T3 X
20(D+ ) = g — D | 2000 — 201) —— coS—
[ u( + 3)]R p VX [ww (0s + 2q) 3L cosL
1. . ¢nd x] G[. 4 TX 2U
- Cx|:§ww - ﬁ(qs‘l' 4) COST] Y [u) + g(qS— Q) cos—— -~ K:| ,
(25)
272El  16G O D272 20¢ Cy¢p?rn?2 501
Plr=——r»n+"—"—(1-2 1+ = 1+ =
Pr="0 4 gy (o) e (0 5) Tl ()
1 [L[4G  =x 2u ¢ X 1,
— —cos— (w—=)->=@0D+C 2o+ Ze?) |dx, 2
+qsL A [?m cosL (w b) 15( 0D + Cy) sin 3 (u+2w )} X, (26)

3

M _ Gr _ ¢L
{F ] . %(Qt 0s) + 630 [9s(35D + 4Cx) + (70D + 17Cy)]

1 [t Ci\\7 . ax({. 1., G X (. 2u
—E/O |:(D+?) §S|nT <U+§U) )+§COST (u)— F)]dx (27)

The equilibrium equatioryV /oq; = 0, highlights the principal difference from the strut model since

it includes the external moment term. This transforms the previously linear fundamental path followed
by a pitchfork bifurcation for the pure compression case, to a nonlinear fundamental path for the beam-
column (Fig.3d) followed by a bifurcation point. In both cases, localized buckling is triggered when the
stress in the more compressed face plate exceeds its local buckling capacity.

3. Preliminary results: 2 degrees of freedom models

The systems of equations are solved using the numerical continuation packag® ADoedelet al,,
1997 for different load eccentricities. &ro is a numerical continuation package that is primarily de-
signed to solve systems of autonomous ODEs and to provide information on how the solutions evolve
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with parametric changes. However, it is also capable of solving non-autonomous ODEs (as in the current
study), initial value problems, boundary value problems, systems of algebraic equations and to a smal,
extent, systems of parabolic partial differential equations. It is particularly well known for its capability 2
to locate bifurcation points of many different types including: saddle—node, pitchfork, period doubling, ;:—)
torus and Hopf; it is also capable of tracing out multiple branching paths and switching between them.g 3
Furthermore, it has the capability of computing homoclinic orbits. In the current study, it is used as a*
boundary value problem solver for a system of two non-autonomous ODESs subject to integral conditions?
and it is the same software that was utilized for the pure strut probtemt(& Wadee 1998 Wadee

et al, 2010 with excellent results. Owing to the symmetry of the structural boundaries of the prob-

lem, to reduce computational cost, the equations are solved for half of the panel by applying symmetr
conditions:

w(L/2) = i(L/2) = u(L/2) = 0. (28)

Naturally, these conditions exclude the possibility of any asymmetric solutiomsifat it has been seen

in previous studiesWadeg 2000 for the strut problem that the symmetric localized solution has the
absolute minimum critical load for cases where the overall buckling mode wavelength is significantly 2
larger than that of the local buckling mode; practical engineering geometries satisfy this condition. The2
following material and geometric properties for the sandwich panels are used in the case study:

I/wo2 dnoolwepeSe//:sdny

wew

Face plate Young’s modulus: E = 68900 N'mn?
Face plate Poisson’s ratio: v=0.3

Face plate thickness: t=05mm

Core Young’s modulus (i andy): Ex = Ey =199 N/mmn?
Core Poisson’s ratio (in andy): vy =vy =0.2

Core Shear modulus: G = 83 N/mn?

Core depth (range): b=51mm— 102 mm
Strut length: L =100 mm

Load eccentricity ratio (range): e/b=0.1—- 05.

The load eccentricity rati@/b is considered only up to the physical limit of5) where the load is
effectively acting directly on the face—core interface. Equilibrium paths and buckling modes of the
panels under different eccentricities are presented below.

3.1 Equilibrium paths and buckling modes

The first sandwich panel to be investigated had a core depth5.1 mm and the load was applied
at variouse/b ratios. As expected from previous work for the strut problem, the two models have a
similar initial pre-buckling path until the point of instability was reached. The increase ig/thetio
produces shallower and less stiff paths that deviate further from the pure strut ca$g. (Hig limiting
loads for the RBT model are always higher than the TBT limiting loads, drawing parallels with the pure
strut problem{Vadeeet al,, 2010. However, the limiting loads in both models decrease with increasing
eccentricity at an almost identical rate (Fi§a)). As in the pure strut case, the membrane stresses ™
developed for the RBT model in the bottom face plate exceed the threshold for plate buckling earher3
than the TBT model, leading to the earlier initiation of interactive buckling for the RBT case. .\)
An interesting feature in the results was found during the comparison of the evolution of the overall 3 S
mode components, sway and tilt. Fi§(b) showsq; plotted againsts for loads applied at various
eccentricities ¢/b = 0.1, 0.3 and 05). During pre-buckling, the two models exhibit similar trends
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FIG. 5. Equilibrium paths for struts with eccentricitieg = 0.1 and 0.5. (a) Load versus normalized end shortening and (b) load
versus maximum lateral deflection.
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FIG. 6. (a) The decrease of limiting loads with increasing eccentricity, (b) the evolution of the generalized coordinates along the
equilibrium paths foe/b = 0.1 (lowest values ofjt) 0.3 and 0.5.

with gt increasing along witlys. Beyond the point of instability, for the TBT model, the slopegef
decreases abruptly indicating a slower growth with increagin@®n the other hand, in the RBT model
the slope of the response beyond the instability becomes negative; hedeereases with increasing
gs. This difference in the response can be attributed to the nonlinear (cubic) cross-sectional deformation
field that relaxes the constraint of constant tilting throughout the depth of the panel. Before the point of
instability, the difference in the cross-sectional deformations are small{Figeyond it, the in-plane
displacement within the core becomes increasingly nonlinear while the displacement at the edges is very
close to the corresponding displacements of the TBT models. The decrepsedurs as the minimum
energy configuration for this displacement field is significantly influenced by the flexibility of the core
under shear.

Localized buckling is triggered at the bifurcation point and the modes are similar for both current
models and the strut cas®1(= 0) since this is caused by the compressive stresses in the bottom
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FiG. 9. Definition of localized buckle wavelengthand maximum wave height .
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face plate (Fig8). The interactive buckling modes of TBT and RBT exhibit similar characteristics
gualitatively, having a localized maximum displacement at midspan that decays towards the boundarle&)
Even though the RBT localized mode is triggered first, leading to a larger mode than the TBT equwalent'\’
particularly in the neighbourhood of the limiting load, the two modes become similar in amplitude and
localized wavelength (Fig. 9) in the advanced post-buckling range where the sway mode dominates.
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4. Submodels with more degrees of freedom

Despite the decrease in the limiting load due to increasing eccentricity, the level of sway at the bifurca-
tion point remains approximately the same for both models since the overall modal displacement func-
tions, W and#, are not hitherto altered to include the effects of the end moments. The initial response
of sandwich beam-columns is not purely squashing but there is also bending that can be decomposed &
into separate sway and tilt components. Hence, the total potential energy of the panels can be adjusted &
such that overall bending is explicitly included; more generalized coordinates are henceforth included in
W andé to address this.

When a beam is loaded only with end moments, it is in a state of uniform bending moment which, to
first order, can be approximated by a quadratic lateral displacement. Including this alongside the effect
of overall buckling, it is expected that the deformation of the beam would be a compromise between the
guadratic (bending) and sinusoidal (overall buckling) mode shapes. Moreover, it would be expected that
the influence of overall bending would be greater until the bifurcation point, beyond which overall and
local buckling would dominate. The changes made to the sway and tilt functions are thus:

peojuMo(

. X X X 2X
W(x) = GsL sin "= + st (1 - E) . 0() =t COST= + (1 - T) : (29)

whereqsp anday, are the respective sway and tilt amplitudes for the bending mode. These updated modes
bring changes with extra terms in the existing equations, besides introducing two further equilibrium
equations whew is differentiated with respect tp anddp.

4.1 Total potential energy

The total potential energy for the 4 degrees of freedom (DOF) submodels for both bending theories,
TBT and RBT, are given below:

L
_ 2 . T X e _1. .2
VT4—/0 [2D¢th [¢ (Qtﬁ sin—— +th) u 210]

CX¢2 2 . X 1/. 1.2 4E| 2 . X
+ 3 th[th + G SmT ~ % u+ S + ?qsb (qsb+ Osm smT)

P Gsb 2x X 2x 2Man
- (1 - T) [qun cosT + QOsb (1 - T)} i

2X .2 T X
+ G(dsb — Cib) (1 - T) |:(w + F) +(Os — CII)E COST
2X

+ (dsb — Gib) (1 - T) “ dx + Vr, (30)

L (2Dg? X 3. 1.
VR4=/0 [ 9¢ (20t + Asb) |:2th+qu+(2%+%)7[25|”%—;(u+§w2):|

P 2 2 2M
_ % (1— —X) [qun cosn—LX +qsb(1— —X)} _ M
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21 o1
+ 3X1¢5 [68% + 3200sh + 593, — ) — (40t + Gsb) (u + sz) + (6800 + 160t0sh
. X 2G - 2X 2%
+ 160m0s + msqsb)nzsun%} y 2000~ ) (1 - T) [4<qsb— o) (1 - T)
2u x| 4El X
+5 (w - F) + 87 (gs — qr) cos”T] + ?CISb<CIsb + qsnz sin ”T)] dx + Vg, (31)

whereVr andVg are given in 13) and (L4), respectively.

4.2 Governing equations

The systems of equations for the submodels are again derived through the calculus of variations wit

additional terms in each equation. For the 4-DOF TBT submodel:

E 15 = (E 1)y — 2050 (D + Cy/6) — = G~ Qo). (32)

(o 5)-poeD) Fawl) o
P = (P} + 80':’ [ZEL—'Z”Z—PHG (1—%)} (34)

(e [S6-2 205

while 6V /6 4 is the same a2@). The terms in the braces with the subscript T refer to the expressions

on the right-hand side of the respectid@)-(22). The two new equilibrium equationgV /ogsp = 0
andoV /oqy = 0 are, respectively, thus:

247 E|
P(120s + 7 Qsp) = %(QSE + Jsh) + G[Zn (Gsb — Ctb) + 247 (ds — Gr)

LD

S5 (459
32 D@ e

M C
5 = 20@ + o) (D + g) +
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For the 4-DOF RBT sub-model the new equations are:

. C 24 . C 4G
E|w={E|w}R_%Wth(D+?X)—ngSb(D+1—S)—K(QSb—th)a (38)
C C 4G 2x

2 (D+ X)=[Zﬂ(D+—X)] (qsb qtb)(l——), (39)
3 3)]x L
PP+ 22| B (2 ) 8D (),
B R gs | 73 L2 9 Osb
ACy 2 Ctb 128G Qb
54162 1-® 40
" 315 ( * Osb T 153 dsb/ |’ (40)
M M 32G 4
b ]+ s — G + Seefan(70D + 17C,) + Gu35D +4Cal, (41

with the two new equilibrium equation8V /dqsp = 0 andoV /oqi, = O being, respectively:

4 16G
P(120s + 7 Qsp) = (qsn + Qsb) + —[12(qs Ot) + 7 (dsb — Cto)]

3242 242
+ i"és ( 2 D+ Cx) (0t + Gw) + (gl” (14D + Cx)(gsm + gsb)
. 2X b Cx . 1. 2
—/ [4G7r(w—F)(l—T) L (2D+?)(U+EU))] dx, (42)
M 4¢
b= 315{35D[2qtb + Osb + 7 (20t + ds)] + Cx[170 + 4dsb + 7 (170t + 40s)] }

8G 2 [t 1
+w[(% Osb)r — 12(gs — qp)] — ﬁ/ [(SD +Cy) (u + sz)
5G /. 2u 2X
o (w_ﬁ) (1 L)] dx. (43)

The terms in the braces with the subscript R refer to the expressions on the right-hand side of the re-
spective equation28)—(27). By taking the second derivative of the five generalized coordinates, setting
the terms in the integral to zero and solving the determinant of the Hessian asgumin@, the same

critical loads for the models and submodels of each core bending theory are found. This is not surpris-
ing since without the influence of the load eccentricity in the work done, the generalized coordinates of
bending {sp andqy,) do not provide any extra contributions to the critical load. The difference between
the 2-DOF models and 4-DOF submodels becomes more pronounced with increasing eccentricity both
in terms of lower limiting loads and lower subsequent post-buckling stiffnesses.
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5. Numerical comparison of models

All the model equations are again solved using the numerical continuation packag®A (Doedel g
et al, 1997 subject to the same conditions and symmetry. The two sandwich panels discussed in Secs
tion 3 are again utilized for various load eccentricities. In both cases, the 4-DOF submodels have ar§
improved performance compared to their corresponding 2-DOF counterparts in the deformation field by&.
including the influence of pure bending. More importantly, the 4-DOF submodels reduce the limiting 3
loads both in terms of load capacity and with respect to the level of sway at the limiting load. This is =
as expected with the extra compression in one of the face plates increasing further before any buckling

occurs. >

2

[0}
5.1 Equilibrium paths =
The equilibrium paths from all four models for two different cases of load eccentriity £ 0.1, §
0.5) are given in Fig10for a sandwich panel of depthlsmm. Closer inspection of a case with small 8
eccentricity,e/b = 0.1, reveals that the pre-buckling paths for the models of each bending theory %
are almost identical. However, the bifurcation point occurs earlier with a slightly lower load level for 8

the submodels that have more DOFs. The same trend continues in the post-buckling range where the
4-DOF submodels follow a lower, almost parallel path to the 2-DOF models, indicating that beyond the-*
instability, as expected, interactive buckling dominates and the influence of overall bending d|m|n|shes<u

Larger differences are observed in FigXb) for the case of a larger eccentricig/b = 0.5, where
the load is effectively placed on the bottom face plate. This amplifies the difference between the earlw
models and the 4-DOF submodels with the RBT 4-DOF model exhibiting a softer pre-buckling path and\.
post-buckling response with a much lower limiting load than its 2-DOF equivalent. For the deeper beam>
(b = 10.2 mm), the merits of the RBT models in predicting the onset of localization earlier is clearly
visible and more importantly the limiting loads predicted by the 4-DOF submodels are much lower than
their 2-DOF counterparts as seen in Fid.

1sqe-:

5.2 Sway versus tilt

dAD Aq 886029/97L/T/

As before, the magnitude of tilt is plotted against the corresponding magnitude of sway. For the 4-DOF
models,gs is changed t@s + gsp/4 and thaty is changed ta; + ow/7, which refer to the maximum

snl

(a) (b)
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FiG. 10. Equilibrium paths of axial load versus overall panel displacement for different load eccentricitigb (&) 0.1 and
(b) e/b = 0.5 for a sandwich panel.5 mm deep.
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FiG. 11. Equilibrium paths of axial load versus overall panel displacement for different load eccentriciggls €)0.1 and (b)
e/b = 0.5 for a sandwich panel 1D mm deep.
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FiG. 12. Evolution of sway and tilt along the equilibrium path from small (lower paths) to large eccentricities.forrarbdeep
sandwich beam: (a) TBT models; (b) RBT models.

overall lateral displacement (over the length) and the maximum angle of tilt ouerespectively

(Fig. 12). The comparison of the TBT models against each other for different eccentricities shows that
with increasing eccentricity, tilt increases faster for the 4-DOF models initially, while beyond the bi-
furcation point the tilt remains constant or even shows a minor decrease with increasing sway. This
difference is even more pronounced when comparing the two RBT models where the amount of tilt
initially increases much faster for the 4-DOF models, while beyond the point of instability the tilt shows
at most only a small decrease as sway increases.
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5.3 Onset of interactive buckling

At the bifurcation point, similar to the 2-DOF models as well as the pure strut case, interactive buckling

is triggered because the local bending stress that is axially compressive on the bottom face plate exceeds
its local buckling stress at midspan; this leads to localized buckling. However, since the current loading
case has an eccentricity, the panel initially bends before any buckling occurs with a nonv-zerd

the local modew is non-trivial comprising a small amplitude half sine wave shape that is derived from
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FiG. 13. The evolution of local and overall modesandW, respectively, for a sandwich panell5nm deep. (ag/b = 0.3, (b) o
L 3
e/b = 0.5. Limiting loads are denoted by D
o
. : . : , &
the forcing function, which appears in the final terms 18)(and @4) for the TBT and RBT models ®
. . . . QD
respectively. Beyond the bifurcation, the much shorter wavelength localized mode grows on top of theg

half sine wave almost independently in the sense\tti@ndw are still linked through the equilibrium
equations, albeit weakly. However, it is worth emphasizing that no localized wave perturbations are see
before the bifurcation point and that the pre-buckling path is akin to a non-trivial fundamental path, a
topic that was covered in detail Bjhompson & Hunt(1973. In Fig. 13, the evolution of the overall

and local modes clearly shows that with increasing eccentricity the 4-DOF submodels predict an earlie®
onset of localization and a steeper development of the localized mode which leads to instability. In termsa
of the localized buckling profile, the results from the four models show similarities both in the number
of peaks present, as well as the localized waveleagthd wave heighH as shown in Fig9.

/917L/L/95109J1

5.4 Validation

AlUN snudAD Ag g8

The analytical formulations developed in this work are concerned with perfectly elastic sandwich panels?
with simple supports under the influence of an eccentric axial force. For validation purposes a fullyf'
numerical model was developed using the FE method within the commercial general purpose packag%
ABAQUS (20086.

The sandwich panels were modelled with the geometric and material properties found in Section
following the steps outlined inWadeeet al. (2010. A 2D continuum was created with the plane stress
assumption where only half the length of the panel was modelled by exploiting the inherent symmetryc
of the system. The core was modelled with the 2D solid element CPS4R, a four-noded bilinear element
with reduced integration and hourglass control. Mesh convergence studies from the receitaadek (
et al, 2010 showed that 10 elements through the depth with an element aspect ratio close to unity™
sufficed to capture the structural response accurately. The face plates were modelled using stringers én
the edges of the core. The use of stringers was deemed more favourable than 2D solid elements smce\st
avoided shear locking in the face plate elements due to the large difference in the stiffness of the corg
and the face plates. Moreover, it was computationally less expensive since only one element was needed
through the depth of the face plates. Lastly, by assuming stringers of specified geometric and material

ABojouyos |
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FiG. 14. Equilibrium paths for different load eccentricities éap = 0.1 and (b)e/b = 0.5 for a sandwich panel.5 mm deep.

properties bonded on the edges of the core, the modelling procedure resembled the analytical models
closely. The stringers were discretized using B22 Timoshenko beam elements.

Simple support conditions were simulated by restraining the vertical displacement of the node at
midheight of the loaded edge. The loaded edge was free to rotate and move horizontally, while at the
other edge, the midheight node was restrained from rotation and horizontal displacement. The load
was applied via load control with an adaptive step size. The loaded edge was constrained so that no
localized stresses and deformations developed on the edge of the panel. Unlike the case of the strut
problem, no overall imperfection was needed to initialize the solutBeiy¢schkoet al, 2000 since
the eccentric loading acts as the necessary perturbation providing the initial bending necessary to trigger
the instability. A number of simulations were devised and conducted for different eccentric loads to
capture the lowest limiting load. The results are compared against the analytical models below.

5.4.1 Equilibrium paths. The equilibrium paths of the FE simulation are presented and compared
with the equilibrium paths of the analytical models for different eccentricities (Eg.The FE paths

show a good correlation with a number of different aspects of the analytical models, especially when
compared against the 4-DOF submodels. For thensm-deep sandwich panel, the limiting loads pre-
dicted by the analytical models are very close to the ones predicted by FE; the 4-DOF submodels differ-
ing with the FE by up to 4%, and for the 2-DOF models up to 6% with the differences being greatest with
increasece/b ratios. The improvement in the prediction of the limiting load is even more pronounced
for the 4-DOF submodels in deeper beams that limit the maximum difference to 12% from 26% for
the 2-DOF models. Further down the post-buckling path, these differences remain since the analytical
post-buckling paths are almost parallel to the FE. Despite the differences observed in the load capacity,
the 4-DOF submodels and FE have an excellent agreement in the rate of decrease of limiting loads with
increasing eccentricity that seems to be approximately linear {B)gThis is almost matched by both

of the 4-DOF submodels even for the deeper sandwich panel that shows the greatest difference in the
limiting loads.

One of the most favourable comparisons observed was for the initiation of interactive buckling
and localization as expressed by the amount of lateral deflection and end shortening at the limiting
load. The 4-DOF models exhibit a decrease in the limiting sWéyrequired to trigger the interactive
buckling mode with increasing eccentricity, unlike the 2-DOF TBT model where the limiting sway
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FiG. 15. Limiting IoadsP'/PC versus eccentricity values/b for (a) a sandwich panel.5 mm deep and (b) a sandwich panel
10.2 mm deep.
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FIG. 16. Comparison of the limiting sway/' for different eccentricities. (&) = 5.1 mm, (b)b = 10.2 mm.
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remains approximately the same regardless of the load eccentricity @righis is in strong agreement
with the FE results. The inclusion of the extra DOFs increase the compressive stresses in the bottom fac;g
plate, thereby reducing the required sway before localized buckling; for larger eccentricities this effect:
is amplified.

uo Jesn ABojou

5.4.2 Localized buckling profiles. The inclusion of the two extra DOFs improved the lateral dis-
placement profile of the panel by introducing a small parabola in the overall bending in conjunction >
with the half sine wave for overall buckling. The FE-induced localized buckling shows an excellent E
gualitative correlation with all the analytical models. Quantitatively the two features that describe the S
localized mode is the wavelengthand wave height of localizatiodl (Fig. 9). Three different cases
were examined, two for a sandwich panel 5.1 mm deep for different eccentrigties< 0.2, 0.5)
and one for a 10.2 mm panel aedb = 0.1. The results are presented in Takland are shown in
Fig. 17(a—c).
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TABLE 1 The wavelengths of localizatiord)( followed by the corresponding wave
heights (H) in parentheses. All lengths are givemrim. The panels are alLl00 mm
long

TBT RBT
b eb &/L FE 2D 4D 2D 4D

51 02 35% 14.2(1.3) 12.9(0.8) 12.1(1.0) 12.6(0.9) 12.7(1.1)
51 05 4.0% 13.9(1.7) 125(1.0) 12.2(1.2) 12.9(1.2) 13.2(1.4)
102 01 5.0% 152(35) 16.2(3.0) 14.9(3.0) 175(3.2) 1B3)
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FIG. 17. (a)—(c) The local mode (x) profiles along the length. (a) 5.1 mm deeph = 0.2 at€/L = 3.5%, (b) 5.08 mm deep,
e/b=0.5at€/L = 4%, (c) 10.2 mm deew/b = 0.1 at€/L = 5% and (d) the total deflection of the bottom face plate for the
same parameters as in (a).

The wavelengths of the analytical models are within 2 mm of the FE result while, for the wave
heights, the RBT 4-DOF effectively matches the ones obtained from FE1Hid), which shows the
total lateral displacement of the bottom face plate, including the overall displacement, clearly indicates
the greater suitability of the 4-DOF models in comparison with the 2-DOF counterparts.
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6. Summary and conclusions

Four increasingly sophisticated analytical models have been presented to account for interactive buck?;
ling in sandwich beam-columns. The applicability of the models is currently confined to sandwich panels:
where the axial load is offset from the panel neutral axis for bending, i.e. where the axial load and theg
moments are inextricably linked.

The first two models—one for TBT and one for the higher order RBT—only allowed for a half sine
wave profile as the lateral displacement function which is the energetically favourable mode shape fo&
overall buckling. Two further submodels were created—one for each bending theory—to mcorporateU
the effects of overall bending due to the eccentricity in the application of the axial load. They were & m
all formulated using energy principles and the governing nonlinear equations were solvedddA
For validation purposes, an FE model was created usigds. The analytical models showed good
correlation with the results from FE, with the 4-DOF submodels reducing the critical load and the cor-
responding level of sway with increasing load eccentricity. The RBT 4-DOF submodel compares veryU
well with the FE results on the level of sway to initiate interactive buckling, as well as with the rate of g
decrease of the critical load with increasing eccentricity. Owing to its nonlinear in-plane core displace-=
ment, the same submodel also seems to be superior in estimating the onset of interactive buckling as
the compressive stress threshold to cause localization is exceeded earlier. On the other hand, the TET
4-DOF submodel is marginally better in estimating the maximum loads and the load carrying capacityz
in post-buckling, which suggests that a linear in-plane displacement may suffice to model the combinas)
tion of bending and buckling in the post-buckling response of beam-columns. In any case, the analytical.
models have shown excellent agreement with the FE simulations for the localized buckling profiles and®
the 4-DOF submodels, in particular, seem to compare excellently for the total lateral displacement.

Further work on interactive buckling in sandwich panels is continuing with more general loading
cases, such as those where moments are independent of the axial load. The approach in the curreht
paper can be adapted in a relatively straightforward manner for more complicated loading scenarios%’
Moreover, the effect of using functionally graded core materials on the nonlinear buckling behaviour of‘°
sandwich panels is currently being investigated. These materials can be used effectively in COﬂjUI’]CtIOB—
with design optimization strategies since their properties can be tailored to the given design loading. Ito
is therefore important to quantify their effect on the nonlinear buckling response; optimization scheme§2
have been known to promote complex instabiliit®mpson & Hun{1973; Wadeg2000, but nonlin-
ear modelling can inform designers of the regions in the parameter space where the interactive buckling:
is potentially less of an issue.
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