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ABSTRACT

In this work, we attempt to ameliorate the impact of data sparsity in
the context of session-based recommendation. Specifically, we seek
to devise a machine learning mechanism capable of extracting subtle
and complex underlying temporal dynamics in the observed session
data, so as to inform the recommendation algorithm. To this end,
we improve upon systems that utilize deep learning techniques with
recurrently connected units; we do so by adopting concepts from
the field of Bayesian statistics, namely variational inference. Our
proposed approach consists in treating the network recurrent units
as stochastic latent variables with a prior distribution imposed over
them. On this basis, we proceed to infer corresponding posteriors;
these can be used for prediction and recommendation generation,
in a way that accounts for the uncertainty in the available sparse
training data. To allow for our approach to easily scale to large
real-world datasets, we perform inference under an approximate
amortized variational inference (AVI) setup, whereby the learned
posteriors are parameterized via (conventional) neural networks.
We perform an extensive experimental evaluation of our approach
using challenging benchmark datasets, and illustrate its superiority
over existing state-of-the-art techniques.
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1 INTRODUCTION

Recommender Systems (RS) constitute a key part of modern e-
commerce websites [29]; their aim is to enhance the user experience,
by providing personalized product recommendations. Recent study
on RS has mainly focused on matrix factorization (MF) methods
and neighborhood search-type models. Such approaches work well
in practice when a rich user profile can be built from the available
data. Unfortunately, though, rich user profiles seldom are readily
available to real-world systems.

Session-based recommendation is a characteristic challenge that
cannot be properly addressed by conventional methodologies em-
ployed in the context of RS. Specifically, under a session-based setup,
recommendation is based only on the actions of a user during a
specific browsing session [29]. Indeed, this type of recommendation
generation approach is based on tracking user actions during an ac-
tive session. Based on the captured and inferred session-based user
behavioral patterns, it tries to predict the following user actions
during that session, and proactively recommend items/actions to
them.

From this description, it becomes apparent that session-based
recommendation engines attempt to generate effective recommen-
dations with the availability of user-specific data being extremely
limited. Consequently, under this setting, conventional algorithmic
approaches towards RS are confronted with hard challenges that
stem from the unavailability of rich user profiles (data sparsity) [19].
Hence, in order to obtain effective session-based RS, it is imperative
that novel methodological approaches be devised. Such methods
must be capable of more effectively inferring and leveraging subtle
session patterns, with the ultimate goal of enriching the available
user profiles so as to properly address the challenges associated
with data sparsity.

Indeed, user session data constitute action sequences poten-
tially entailing rich, complex, and subtle temporal dynamics. Thus,
enabling effective extraction of these underlying dynamics, and
utilizing them in the context of a preference inference mechanism,
may result in novel session-based RS with considerably improved
recommendation quality performance compared to the alternatives.
Markov chain models (e.g., [30]) constitute the most typical type
of machine learning methods used to achieve this goal. However,
recent breakthroughs in the field of Deep Learning (DL) [20] have
lately come into close scrutiny, as a potential alternative means of
addressing these challenges. Specifically, the introduction of novel
treatments of Recurrent Neural Networks (RNNs) [4], with com-
pelling performance in as challenging and diverse tasks as image
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recognition, natural language understanding, and video captioning,
has motivated their application to session-based RS. Contrary to
simple deep network formulations that comprise only feedforward
connections, RNNs also entail recurrent connections that allow for
them to construct an internal representation of their observations
history [25]. This representation, which is encoded in the form of a
high-dimensional vector of hidden unit activations, can then be uti-
lized to address challenging learning tasks dealing with sequential
data.

In this context, the work recently presented in [13] constitutes
the most characteristic development. The RNNs employed therein
are presented with data regarding the items a user selects and clicks
on during a given session. On this basis, recommendation relies
on the history of previous actions (clicks on items) during that
session, and the inferred behavioral patterns. As shown therein,
this method yields state-of-the-art session-based recommendation
performance in several challenging benchmark problems.

Motivated from these advances, in this paper we seek derivation
of a solid inferential framework that allows for increasing the capa-
bility of RNN-driven session-based RS to ameliorate the negative
effects of data sparsity. To this end, we draw inspiration from recent
RS developments which rely on the utilization of Bayesian inference
techniques (e.g., [5, 6, 12, 22, 27]). Bayesian inference in the context
of RS can be performed by considering that the postulated model
variables pertaining to the system users and items are stochastic
latent variables with some prior distribution imposed over them.
This inferential framework allows for the developed recommenda-
tion engine to account for the uncertainty in the available (sparse)
training data. Thus, it is expected to allow for much improved
predictive performance outcomes compared to the alternatives.

Under this rationale, our proposed approach is founded upon
the fundamental assumption that the hidden units of the postulated
RNNs constitute latent variables of stochastic nature, imposed some
appropriate prior distribution. On this basis, we proceed to infer
their corresponding posteriors, using the available training data.
Specifically, to allow for our model to scale to real-world datasets,
comprising millions of examples, we perform inference by resort-
ing to the amortized variational inference (AVI) paradigm [17, 18].
This is an approximate inference approach, which consists in: (i)
parameterizing the inferred posterior distributions by means of
conventional neural networks (inference networks); and (ii) casting
the inference problem as an optimization problem, by making use
of ideas from variational calculus.

We evaluate the efficacy of the so-obtained approach, dubbed
Recurrent Latent Variable Network for Session-Based Recommenda-
tion (ReLaVaR), considering a challenging publicly available bench-
mark. We compare the obtained predictive performance of ReLaVaR
with state-of-the-art techniques; we show that our approach com-
pletely outperforms the competition, without presenting any limi-
tations in terms of computational efficiency and scalability.

The remainder of this paper is organized as follows: In the fol-
lowing Section, we provide a brief overview of the related work. In
Section 3, we introduce our approach; specifically, we elaborate on
its motivation, formally define our proposed model, and derive its
training and prediction generation formulae. In Section 4, we per-
form the experimental evaluation of our approach, and illustrate its
merits over the current state-of-the-art. Finally, in the concluding
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Section of this paper, we summarize our contribution and discuss
our results.

2 RELATED WORK

The continuous explosion in the availability of content through
the Internet renders design of RS a significant challenge for both
the academic and industrial research communities. Ratings-based
collaborative filtering (CF) systems have served as an effective
approach to address this challenge [7]. The intuitive idea behind
their design consists in considering that the preferences of a user
can be inferred by exploiting past ratings of that user as well as
users with related behavioral patterns. This thriving subfield of
machine learning started becoming popular in the late 1990s with
the development of online services such as Amazon, Yahoo! Music,
MovieLens, Netflix, and CiteULike.

Existing CF methods can be classified intro three main cate-
gories: memory-based methods, model-based methods, and hybrid
methods which attempt to combine ideas from the former two
paradigms. Memory-based systems generate predictions under a
neighborhood-driven rationale: Item rating prediction for a target
user comprises determination of other users with similar ratings
(target user neighbors), and computation of a weighted average
of the ratings of each item provided by the target user neighbors
[1, 15]. A drawback of this paradigm is that, given the high spar-
sity of the ratings matrix, the neighborhood of a target user may
contain only few, if any, ratings for a given item. Moreover, such
approaches require keeping the whole ratings matrix in memory
to perform prediction in real-time. This might be computation-
ally prohibitive when dealing with large real-world systems; thus,
scalability is limited.

Model-based CF methods attempt to ameliorate these issues
by using the available ratings data to train a machine learning
model which expresses the rating decision function of the users.
Given the trained model, prediction generation becomes extremely
efficient, thus affording scalable real-time operation. MF-based
methods are perhaps the most popular class of model-based CF
approaches [9, 21, 26, 27]. These methods assume that the registered
users and items are related to sets of variables that lie in some low-
dimensional latent space; prediction is performed based on these
latent features inferred for each user and item.

Recently, several authors have considered introducing elabo-
rate statistical assumptions into MF, that allow for performing full
Bayesian inference (e.g., [5, 6, 12, 22, 27]). Under this approach, it
is considered that the user and item variables constitute stochastic
latent variables, over which an appropriate prior distribution is
imposed, and a corresponding posterior is inferred from the data.
Broad empirical evidence has shown that, under such a Bayesian
inference-driven setup, real-world RS can yield a noticeable predic-
tive accuracy improvement without comprises in computational
scalability. Indeed, this outcome is well-expected from a theoreti-
cal point of view; this is due to the fact that a Bayesian inference
treatment allows for better accounting for the uncertainty in the
(training) data, which is prevalent in RS due to the sparsity of the
available ratings matrices.
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On the other hand, in the last years the field of machine learning
has witnessed a new wave of innovation, due to the DL break-
through [20]. Unsurprisingly, the significant advances accom-
plished in the context of DL have had a noteworthy impact on
the ongoing research on RS. Indeed, several researchers working
on model-based CF methods have recently proposed novel CF algo-
rithms that employ DL-based models as an alternative to conven-
tional MF-driven approaches.

In this vein, the work of [28] constitutes one of the earliest
ones that adopted ideas from the field of DL to effect the CF task.
Specifically, they employed Restricted Boltzmann Machines (RBMs)
to learn the user and item latent vectors, and showed that their
approach outperforms various popular alternatives in the Netflix
challenge dataset. More recently, the method in [32] presented a hi-
erarchical Bayesian model called collaborative deep learning (CDL)
for RS. This approach attempts to resolve the cold-start problem
by augmenting the MF algorithm with appropriate side informa-
tion related to item content. This side information is obtained, in
turn, from a DL model; this learns to extract useful, high-level
representations from the raw item content, so as to inform the MF
algorithm.

Despite this extensive research effort devoted to RS, session-
based recommendation is a field that remained unappreciated for
quite long, and has only recently attracted significant attention
from the research community. Indeed, most of news and media
sites, as well as many e-commerce sites (especially of small retailers)
track the users that visit their sites only for short periods of time.
Besides, the use of cookies or browser fingerprinting does not allow
for obtaining reliable user data over long periods, spanning multiple
sessions. Finally, it is very often the case that the behavior of users
exhibits session-based traits.

These facts bring to the fore the need of developing effective
session-based RS, that can satisfy the following desiderata: (i) each
session of the same user must be treated independently of their
previous ones; (ii) the used algorithms must be capable of extract-
ing subtle temporal behavioral patterns from the available user
profiles, e.g. item-to-item similarity, co-occurrence, and transition
probabilities; and (iii) this inferential procedure must be effectively
carried out over long temporal horizons, as opposed to unrealistic
low-order (e.g., one-step) temporal dependence models, that take
only the last click or selection of the user into account (and ignore
the information of past clicks in the same session).

To address these issues, [33] introduced a novel framework based
on traditional RNNs, and evaluated it using the click-through logs
of a large scale commercial engine; their results showed signif-
icant improvements on the click-prediction accuracy compared
to sequence-independent approaches. In a similar vein, [13] pre-
sented an RNN-type machine learning model capable of learning
subtle temporal patterns in user session data obtained from large e-
commerce websites. Specifically, to allow for effectively extracting
high-order temporal dynamics, they utilized Gated Recurrent Unit
(GRU) networks [8]. Such networks entail a more elaborate model
of an RNN unit, that aims at dealing with the vanishing/exploding
gradient problem; this is a problem that plagues training of conven-
tional RNN, often rendering it completely infeasible [14]. Their
method was shown to outperform state-of-the-art alternatives in
two large-scale tasks, including the challenging RecSys Challenge
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2015 benchmark [3]. Finally, [31] proposed two extensions of the
breakthrough work of [13], namely: (i) data augmentation via se-
quence preprocessing; and (ii) a simple model pre-training tech-
nique, to account for temporal shifts in the data distribution. As
they showed, their proposed extensions yield an improvement over
the method in [13] by more than 10%.

3 PROPOSED APPROACH

As we have already discussed, the main contribution of our work
consists in devising a machine learning model that is capable of
extracting subtle and informative temporal dynamics from sparse
user session data, with a special focus on accounting for the en-
tailed uncertainty; we use this information to drive the developed
recommendation algorithm. We posit that such a capacity will al-
low for a significant increase in the eventually obtained predictive
performance.

Under this rationale, ReLaVaR frames the session-based rec-
ommendation problem as a sequence-based prediction problem.
Specifically, let us denote as {xi};’:1 a user session; here, x; is the
ith clicked item, which constitutes a selection among m alternatives,
and is encoded in the form of an 1-hot representation. Then, we for-
mulate session-based recommendation as the problem of predicting
the score vector y;,; = [yi+1, ] ]"; , of the available items with re-
spect to the following user action, where y;+1,; € R is the predicted
score of the jth item. Typically, we are interested in recommending
more than one items for the considered user to choose from; hence,
at each time point we select the top-k items (as ranked via y) to
recommend to the user. Thus, the goal of this work is to devise a
machine learning model capable of more accurately predicting the
vectors y;, , given the observed subsequences {xs}i_., Vi.

s=1’

3.1 Methodological Background

To achieve our goals, we draw inspiration from state-of-the-art,
RNN-based approaches, such as [13]. Thus, we begin by postulating
an RNN structure comprising GRU units. At each time point, i,
the postulated network is presented with the current user action
(selected item), x;, and is expected to generate a prediction for the
score vector y;, ; pertaining to the (i +1)th user selection. Formally,
the recurrent units activation vector, h, of a postulated GRU-based
network are updated at time i according to the following expression:

hi=(1-zi)-hi-1+z;h; (1)
where - denotes the elementwise product between two vectors, h;—1
is the recurrent units activation vector at the previous time point,
and z; is the update gate output. This gate essentially learns to
control when and by how much to update the hidden state of the
recurrent units; it holds

zi =t(Wyxi + Uzhi1) 2

where 7() is the logistic sigmoid function, and the W, and U,
are trainable network parameters. On the other hand, in Eq. (1),
ﬁ,- is the candidate activations vector of the GRU units at time i;
its expression is a standard recurrent unit update expression with
trainable parameters W and U, yielding

hi = tanh(Wx; + U(r; - hi—1)) 3)
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Here, r; denotes the output of the reset gate of the GRU network.
This gate essentially learns to decide when the internal memory of
the GRU units must be reset, with the ultimate goal of preventing
the gradients of the model objective function from exploding to
infinity or vanishing to zero during model training; it reads

ri=t(Wyx; +U,h;—1) 4

with the W, and U, being trainable network parameters.

3.2 Model Formulation

ReLaVaR extends upon the model design principles discussed in
the previous section. It does so by introducing a novel formulation
that renders the developed GRU-based recommendation model
amenable to Bayesian inference. To effect our modeling goals,
we consider that the component recurrent unit activations are
stochastic latent variables. Specifically, we start by imposing a
simple prior distribution over them, which reads

p(hi) = N(hi]0,I) ®)

where N(&|p, X) is a multivariate Gaussian density with mean p
and covariance matrix X, and I is the identity matrix.

On this basis, we seek to devise an efficient means of inferring the
corresponding posterior distributions, given the available training
data. To this end, we draw inspiration from the AVI paradigm
[17]; specifically, we postulate that the sought posteriors, g(h),
approximately take the form of Gaussians with means and isotropic
covariance matrices parameterized via GRU networks. We have:

q(hi; 0) = N (hi|pg(xi), o (xi)I) (6)

In this expression, the mean vectors, gg(x;), as well as the vari-

ance functions, 05 (x), are outputs of a postulated GRU network,
with parameters set 0. In other words, we have

[o(x:), log o (x1)] = (1-2;)-[mg(xi-1), log g (xi-1)]+2i-hi (7)
where
zi = T(Wox; + Uz[pg(xi-1), log o (xi-1)]) ®)

h; = tanh(Wx; + U(r; - [pg(xi-1).Jog oj(xi-D)])) (9
and
ri = t(W,xi + Urlpg(xi)logog(xi-))) - (10)
while [£, {] denotes the concatenation of vectors £ and ¢. On this
basis, the values of the latent variables (stochastic unit activations)
h; can be computed by drawing (posterior) samples from the in-
ferred posterior density (6).

Finally, let us turn to the output layer of the proposed model.
This is presented with the (drawn samples of the) activation vectors
h; of our model, and generates a vector of predicted score values
Yy, pertaining to the following user action. On this basis, we
need to appropriately impose a suitable distribution over these
generated output variables of our model, y;;, conditional on the
corresponding latent vectors, h;. Indeed, by reviewing the related
literature, one may discover a number of possible alternatives for
the conditional likelihood function of a ranking prediction model
with the kind of probabilistic formulation that ReLaVaR adopts.
Each one of these alternatives essentially gives rise to a different
rationale in terms of quantifying the ranking accuracy of the trained
model.
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In general, item ranking can be pointwise, pairwise or listwise.
Pointwise ranking estimates the score of items independently of
each other; then, the goal of model training is to ensure that relevant
items receive a high score. Pairwise ranking compares the score of
pairs of a positive and a negative item; then, model training aims at
enforcing the score of the positive item to be higher than that of the
negative one, for all the available pairs. Such a construction allows
for one to limit score computation for the purposes of model train-
ing to a select subset of the available items. On the downside, such
a formulation may undermine the eventually obtained accuracy
of the recommendation algorithm. On the other hand, pointwise
approaches require score computation for the whole set of available
items. This is certainly more computationally demanding than pair-
wise approaches. However, this extra computational complexity
does not necessarily translate into reduced scalability to real-world
systems. This is especially the case with DL algorithms, which can
be easily parallelized at a large scale by using cheap GPU hardware.
Finally, listwise ranking uses the scores of all items and compares
them to the perfect ordering. This entails item sorting, which can
be computationally prohibitive in cases of large-scale systems.

Motivated from this discussion, in this work we resort to the
most straightforward conditional likelihood selection for our model,
namely a simple Multinoulli distribution; that is

Pyierj = 1lhi) o< t(w) - hy) (11)

where W, = [W{J] J”i , are trainable parameters of the output layer
of the model.

This selection can be viewed as giving rise to a pointwise ranking
criterion, with the associated ranking loss function, L, being equal
to the negative conditional log-likelihood expression that stems
from (11). We have:

n
Ls =~ )" logp(y;,hi) (12)
i=1
n,m
- Z {yi+1,)j logp(yisy,j = 1lh:) (13)
i1

= (1= yir1,j) log (1 = p(yir1,j = 1|hy))} (19)
It is easy to notice that this loss function expression, Lg, essentially

constitutes the familiar (binary) Cross-Entropy function, widely
used in DL literature.

3.3 Training Algorithm

Let us consider a training dataset 9, which comprises a number
of click sequences (sessions), pertaining to a multitude of users.
Variational inference for the developed ReLaVaR model consists in
maximization of a lower-bound to the log-marginal likelihood of the
model (evidence lower-bound, ELBO) w.r.t. the model parameters
[16]. Based on the previous model definition, the ELBO expression
of ReLaVaR yields:

logp(D) 2 { ~ KL[q(hs: 0)llp(hy)] - E[LSJ} (15)

1

Here, KL|g||p] is the KL divergence between the distribution g(-)
and the distribution p(-) [its analytical expression can be found in
the Appendix].
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Unfortunately, the posterior expectation E[L] cannot be com-
puted analytically; hence, its gradient becomes intractable. This
is due to the nonconjugate formulation of ReLaVaR, which stems
from its nonlinear assumptions. As a consequence, training the
entailed parameter sets 0 is infeasible.

One could argue that this problem might be resolved by approxi-
mating this expectation using a set of I' Monte-Carlo (MC) samples,
{hz./})lj:l, drawn from the inferred posteriors. However, it is well-
known that such an approximation would result in estimators with
unacceptably high variance. AVI resolves these issues by means
of a smart reparameterization of the MC samples of a Gaussian
posterior density; specifically, we have [17, 18]:

hY = pg() + og(-) €” (16)

where €V is white random noise with unitary variance, i.e. €/ ~
N(0,I). By adopting this reparameterization, the MC samples
drawn from the posterior density (6) can be now expressed as
differentiable functions of the sought parameter sets, 6, and some
random noise variable with low (unitary) variance, €. Consequently,
the problematic posterior expectation E[L; ], originally defined over
the latent activations, reduces to a much more attractive posterior
expectation w.r.t. a low variance (random noise) variable.

Then, by taking the gradient of the so-reparameterized ELBO
(13) in the context of any stochastic optimization algorithm, one
can yield low variance estimators for the parameter sets, under
some mild conditions [17]. To this end, [17] suggest utilization
of Adagrad; this constitutes a stochastic gradient algorithm with
adaptive step-size [10], and fast and proven convergence to a local
optimum. We follow this advice in this work, selecting Adagrad as
the stochastic optimizer of choice for training the ReLaVaR model.

3.4 Prediction Generation

Having trained a ReLaVaR model, given some dataset D, recommen-
dation generation in the context of a user session can be performed
by computing the predicted ratings y;_ ;, and selecting the top-k
of them to recommend to the user. To effect this procedure, we
sample the latent variables h; from the corresponding variational
posterior distributions. Indeed, to allow for obtaining reliable esti-
mators, we draw a set comprising I' samples from the posteriors (6);
eventually, this yields a set of scoring function samples, {yi./+1 })r/=1~
Then, recommendation is performed on the basis of the mean of
these samples; that is, we employ a standard MC-type rationale.

4 EXPERIMENTAL EVALUATION

To provide strong empirical evidence of the merits of our approach,
in this Section we extensively evaluate it in challenging experimen-
tal scenarios. To this end, we exploit the benchmark dataset released
in the context of the RecSys Challenge 2015 [3]; this comprises
click-stream data pertaining to user sessions with an e-commerce
website.

Unfortunately, the test set of the aforementioned benchmark
does not provide groundtruth information that can be used for
recommendation quality evaluation. To resolve this issue, we adopt
the solution suggested in [13]; we split the originally available
training data into one set comprising 7,966,257 sessions (with a
total of 31,637,239 click actions), and another one comprising the
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remainder 5,324 sessions (with a total of 71, 222 click actions); we
use the former for model training and the latter for evaluation
purposes. Both sets entail a total of 37,483 items that a user may
select to click on. Thus, we are dealing with a very sparse dataset,
where the need of inferring more subtle and informative patterns
comes to the fore with increased complexity.

To obtain some comparative results, apart from our method
we also cite the performance of recently proposed state-of-the-art
alternatives in the same benchmark, namely the GRU-based method
presented in [13], and the M2 and M4 approach introduced in [31].
In addition, we also run on the same dataset a standard baseline
method in the field of matrix factorization, namely BPR-MF [24]
and capture its accuracy. Since BPR-MF is designed for processing
single item feature vectors, as oppposed to sequences, to apply it
in the context of session-based recommendation we average the
feature vectors of the items occurring thus far in a given session.

Our source codes have been developed in Python, and made use
of the Theano library! [2]. We run our experiments on an Intel
Xeon 2.5GHz Quad-Core server with 64GB RAM and an NVIDIA
Tesla K40 GPU accelerator.

4.1 ReLaVaR Model Configuration

In the following, we experiment with a diverse set of selections
for the size of the latent variable space (number of recurrent latent
variables). We report the best performing model configuration in
Section 4.3; we provide deep insights on how model performance
varies with this selection in Section 4.4. In all cases, parameter
initialization for our model is performed by resorting to the Glorot
Normal initialization scheme [11]; dropout with a rate equal to 0.5
is employed for regularization purposes.

To perform model training, Adagrad is carried out by utilizing
session-parallel mini-batches, following the suggestions in [13]. Let
us consider we adopt a mini-batch size equal to . Then, session-
parallel mini-batches can be obtained by using the first event of
the first f sessions to form the input data of the first mini-batch
(the desired output is the second events of our active sessions);
we use the second events to form the second mini-batch, and so
forth. When a session ends, we put the next available session in its
place. In the occasion of such a switch taking place, we reset the
appropriate hidden state of the model, since we assume that the
training sessions constitute independent and identically distributed
(sequential) data.

To facilitate convergence, Nesterov momentum [23] is addition-
ally applied during training. In all cases, Adagrad’s global stepsize
is chosen from the set {0.005,0.01,0.05, 0.1}, while momentum
strength is chosen from the set {0, 0.1,0.2, 0.3, 0.4}, both on the ba-
sis of network performance on the training set in the first few train-
ing algorithm iterations. Contrary to [31], we do not perform any
tedious data augmentation procedure or model pretraining. Thus,
our approach is not directly comparable to [31], since application of
the pre-processing steps proposed therein should be well-expected
to also increase the performance of ReLaVaR. However, we do cite
the performance results reported in [31] for completeness sake.

Uhttp://deeplearning.net/software/theano/


http://deeplearning.net/software/theano/

, June 2017,

Table 1: Best performance results of the evaluated methods.

l Method ‘ Model Size ‘ Recall@20 ‘ MRR@20 ‘
BPR-MF - 0.2574 0.0618
GRU w/ BPR Loss [13] 1000 0.6322 0.2467
GRU w/ TOP1 Loss [13] 1000 0.6206 0.2693
M2 [31] 100 0.7129 0.3091
M4 [31] 1000 0.6676 0.2847
ReLaVaR 1500 0.6507 0.3527

4.2 Performance Metrics

To quantitatively assess the performance of our approach, we em-
ploy two commonly used evaluation metrics, namely Recall@20 and
Mean Reciprocal Rank (MRR)@20. The former metric expresses the
frequency at which the desired (groundtruth) item in the test data
makes it to the 20 highest ranked items suggested by the evaluated
approach. Hence, this metric allows for modeling and assessing
certain practical scenarios where there is no highlighting of recom-
mendations; what matters is the desired item being included in a
short list of recommendations, rather than the absolute order that
these items are presented to the user. On the other hand, MRR@20
describes the average predicted score of the desired items in the test
data, with the score values set to zero if the desired item does not
make it to the top-20 list of ranked items. Thus, MRR@20 models
scenarios where absolute item ordering does matter; for instance,
it allows for better algorithm evaluation in cases where the lower
ranked items are visible only after scrolling.

4.3 Empirical Performance

We commence the presentation of our experimental results by re-
porting on the best-performing configuration of our model (i.e.,
selection of the number of latent variables that maximizes empiri-
cal performance on the test set); our findings are summarized in
Table 1. In the same Table, we also illustrate how these empirical
findings compare to the considered competitors of our method,
that is BPR-MF, M2, M4, and the GRU-driven approach of [13]. We
report two different performance results for the GRU-based method,
which correspond to two different loss functions considered in [13],
namely BPR and TOP1; the former selection yields better Recall@20
outcomes for that method, while the latter yields a better MRR@20
value. Moreover, regarding the methods proposed in [31] it can be
observed from Table 1 that as the number of hidden units increases
the accuracy of the proposed method declines.

As we observe, our approach outperforms all previously reported
state-of-the-art results in terms of the MRR@20 metric, while yield-
ing the second-best reported performance in terms of the Recall@20
metric?. The number of component latent variables for our method
is equal to 1500; this represents a larger network than the one that
obtains best performance for the considered alternatives. This fact
constitutes further supporting evidence of the capacity of our ap-
proach to extract subtler temporal dynamics from the available data
without getting prone to overfitting.

2We obtained this outcome with the mini-batch size set equal to 50, Adagrad step size
set equal to 0.05, and momentum strength set equal to 0.
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Figure 1: ReLaVaR performance fluctuation with the num-
ber of latent variables.

4.4 Further Investigation

4.4.1  Varying the size of the latent variable space. It is well-
understood that the number of latent units bears significant impact
on the obtained empirical performance. To allow for examining
the extent of this effect, in Fig. 1 we show how the considered
performance metrics vary when adjusting the number of latent
units of a trained ReLaVaR model. These results have been obtained
with the training algorithm hyperparameters remaining the same
as described in section 4.3.

As it can be seen from Fig. 1, ReLaVaR accuracy, as measured
via both the considered metrics, grows as we add more latent units.
The increase is more prominent when the network size is small,
and tends to be lower for larger networks.

4.4.2  Considering alternative loss functions. Further, it is inter-
esting to examine how the performance of our model compares to
the competition in case we adopt a different type of loss function,
Ls. To this end, we consider a pairwise ranking loss, namely the
TOP1 loss function that was introduced in [13].

The obtained results (for best model configuration) are provided
in Table 2. As we observe, appropriate selection of the employed
loss function, L, is a crucial factor that determines the success
of our approach in modeling the considered dataset. Indeed, re-
placement of the Cross-Entropy loss function with TOP1 yields
a notable performance deterioration, especially in terms of the
obtained MRR@20 values.

To provide some further insights, in Fig. 2 we illustrate the corre-
sponding results regarding performance fluctuation with the size of
the latent variable space. We observe that model size continues to
have a significant effect on ReLaVaR predictive performance when
using this alternative loss function.

4.5 Computational Complexity

Apart from predictive accuracy, another aspect of machine learning
models that is of utmost importance when dealing with real-world
applications concerns computational efficiency. This aspect entails
examination of both model scalability to large datasets, as well as of
the imposed computational overheads when it comes to prediction
generation.
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Table 2: ReLaVaR model performance for different selec-
tions of the employed loss function, L (results correspond
to best network configuration).

Loss Function l TOP1 l Cross-Entropy ‘

# Latent Units 1000 1500
Step Size 0.1 0.05
Momentum Weight 0 0
Recall@20 0.6250 0.6507
MRR@20 0.2727 0.3527
0.7
06 / ~>
05
0.4
Accuracy s ——Recall @20
MRR@20
02 +—
0.1
0
100 200 500 750 1000 1500
Latent Units

Figure 2: ReLaVaR performance fluctuation with the num-
ber of latent variables: Use of the TOP1 loss function.

To investigate these aspects of the proposed approach, in Table 3
we perform a comparison of wall-clock times between our method
and the current state-of-the-art. The measurements reported therein
concern alternative selections of the employed loss function, Lg; in
all cases, they pertain to network sizes yielding the best empirical
accuracy of the evaluated methods.

From this exhibition, it becomes apparent that not only our ap-
proach yields competitive accuracy, but it does so while remaining
competitive in terms of computational costs. Specifically, notice
that the slight difference in computational costs between the orig-
inal formulation of ReLaVaR (i.e., using the Cross-Entropy loss
function) and the competition is merely due to the larger size of
the trained network. Note also that all the compared approaches
allow for real-time prediction generation. Thus, we can soundly ar-
gue that our method constitutes an attractive solution for building
real-world session-based RS.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we attacked the problem of session-based recommen-
dation. Specifically, our work was motivated from the sequential
nature of the addressed predictive setup, and the associated sparsity
of the available data. Our expectation was that, by better addressing
these issues, one may be able to obtain a noticeable improvement
in the quality of the generated recommendations.

To this end, we introduced a way of improving the modeling
capacity of RS that utilize deep learning techniques with recurrently
connected units. Specifically, we effected this goal by adopting
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concepts from the field of Bayesian statistics, namely variational
inference. The proposed approach, dubbed ReLaVaR, constitutes
a hierarchical latent variable model, where the inferred posterior
distributions are parameterized via GRU networks. Such a Bayesian
inferential setup: (i) retains the prowess of existing GRU-based
networks in terms of extracting and analyzing salient temporal
patterns in the available user sessions data; and (ii) allows for
accounting for the uncertainty in the available (sparse) data when
performing prediction and recommendation generation; enabling
this capability is well-known to yield a noticeable performance
improvement in real-world data modeling scenarios.

We performed an extensive experimental evaluation of our ap-
proach using a challenging benchmark dataset. We provided thor-
ough insights into the predictive behavior of our approach under
different setups of the employed training algorithm, as well as un-
der different selections of the postulated network configuration.
As we showed, our approach is capable of outperforming existing
state-of-the-art alternatives in terms of two popular performance
metrics. We also illustrated that our proposed approach achieves
this accuracy improvement without undermining computational
efficiency, both in training time and in prediction generation time.

One research direction that we have not considered in this work
concerns the possibility of stacking multiple network layers, one on
top of the other, to create a more potent sequential data modeling
pipeline. In such a formulation, the input of the bottom GRU layer
is the observed data sequence, {x;}" pson the other hand, each one
of the subsequent GRU layers is presented with the sequence of
activation vectors, {h;}I_ |, of the layer that immediately precedes it
in the hierarchy; the model output layer is driven from the recurrent
unit activations vector of the topmost GRU layer.

Stacking multiple layers of GRU networks allows for performing
inference and analysis of temporal patterns in multiple time-scales.
Thus, one might theoretically expect that such an architecture
should be capable of yielding improved performance in real-world
session-based RS. However, related findings in the recent literature,
e.g. [13], have shown this not to be the case; for instance, [13]
showed that (stacked) multilayer architectures impose significant
extra computational burden without yielding any benefit in terms
of predictive accuracy. Indeed, this behavior can be attributed to
the short typical length of user sessions, whence temporal pattern
analysis on multiple time-scales becomes less relevant.

It was these results that motivated us not to examine stacked
multilayer variants of ReLaVaR in the context of this work. How-
ever, we do believe that stacked multilayer variants of ReLaVaR
might possess favorable performance characteristics in the context
of different sorts of systems dealing with session data. Thus, inves-
tigation of such possible opportunities remains among our plans
for future research pursuits.

APPENDIX
Using (5)-(6), we obtain:
o
KL[g(h:O)llp(hi)] == 5 > [no(xi)®
d=1 (17)

[1 +10g0'6(x1) - og(x:) ]

NIU
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Table 3: Comparison of computational times (in seconds), for various selections of the employed loss function. Results pertain
to network configurations yielding best accuracy.

l Method [ Network Size [ Training time (total) [ Prediction time per click event (average) ‘
GRU w/ BPR Loss 1000 Units 48692.48 0.683
GRU w/ TOP1 Loss 1000 Units 44716.60 0.627
ReLaVaR w/ TOP1 Loss 1000 Units 42357.84 0.595
ReLaVaR w/ Cross-Entropy Loss 1500 Units 60109.86 0.844

where [-] is the dth element of a vector, and D is the dimensionality
of the postulated latent space.
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