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Floor mosaics are of great interest for archaeologists and art historians. While in the last decade other scientific
sectors supported their study mainly from a technical point of view, through traditional archaeometric analysis,
this paper suggests an innovative methodological approach and presents some preliminary results aiming to a
non-destructive investigation based on the spectroradiometric analysis of stones used for manufacturing the an-
cient floor mosaics of Cyprus. This method evaluates the results of spectroradiometric analysis in relation to re-
liable destructive analysis completed in the past on the hereunder examined samples. In addition, the results of
the proposed approach foresee to contribute to the expansion of the existing Cypriot database of floor mosaics,
improving their characterization by collecting their spectral signatures in the range of 350–2500 nm. The pro-
posedmethodology has been applied to a number of stone samples directly linked to pavement floormosaic tes-
serae from Cyprus. The results have shown that spectroradiometers may be used in order to identify
mineralogical compositions of the stones with an accuracy of nearly 90%. To the best of our knowledge, this is
the first time that a comprehensive spectral library related to Cyprus floor mosaics is derived.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A series of complex and unique geological processes have made Cy-
prus a geological model for the earth scientists worldwide, and has been
the primary factor in the creation of the island's natural environment
(Dep. Geol. Surv., 2002) (Fig. 1). The singularity of Cypriot geology has
played an important role in the course of history and helped significantly
the cultural and socio-economic growth and development of the island.

Moreover, the geological variety of Cyprus contributed significantly
to the development of the mosaic art on the island. The vast chromatic
spectrum of the rocks along with their mechanical properties offered
the opportunity to this form of art to flourish and manifest through ex-
ceptional examples, allowing the mosaic artisans of ancient times to
create magnificent masterpieces and to experiment through their
work. Τhe Mamonian Complex provided the main material source for
these artefacts (Charalambous et al., 2009a; Charalambous, 2011). The
complex itself, as well as the Fasoula formation, was until recently the
main source of primary material for the mosaic artisans, even of recent
times (Charalambous et al., 2009a).
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Ancient floor mosaics represent one of the greatest artistic expres-
sions of the spirit of Hellenistic and Roman art in Cyprus, with the
most exceptional examples dating to the late Roman, early Christian
and Byzantine periods (Fig. 2) (Michaelides, 1987; Charalambous,
2012). These mosaics represent one of the most important sectors of
art and archaeology for Cyprus for an extensive period of the ancient
history of the island, and provide significant information regarding the
trends of the corresponding periods both in terms of stylistic prefer-
ences and manufacturing technologies employed, including techniques
and materials used. Therefore, the study of the floor mosaicsof Cyprus,
especially of the Roman, late Roman and early Byzantine periods
(2nd–7th century CE), is considered very important for different scien-
tific sectors principally including archaeology, art history, archaeometry
and mosaic conservation (Charalambous et al., 2009a; Charalambous et
al., 2009b; Hadjicosti and Charalambous, 2011; Charalambous, 2012).

A comprehensive and detailed study of themanufacturing technolo-
gy of floor mosaics in Cyprus was recently compiled by Charalambous
(2012). In his work, among the various aspects of the floor mosaics
taken into account, a special effort was given in identifying the geolog-
ical provenance of the stone tesserae of mosaic pavements all over the
island.A number of natural rocks and stone mosaic tesserae were ana-
lyzed in terms ofmicroscopic observation, colorimetric analysis and dif-
fractometry to determine their mineralogical composition. The
achieved result evidenced the provenance of stone mosaic tesserae
and their correlation to specific geological formations of the island. In
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Geological map of Cyprus.

Fig. 2. Nea Paphos: floor mosaic pavement from the ‘Villa of Theseus’ 3rd–4th century CE (photo taken by Dr. E. Charalambous).
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addition, it contained a detailed list reproducing all floormosaics on the
island where the examined tesserae had been found.

As results from the literature (Bonnerot et al., 2015; Piovesan et al.,
2014; Calia et al., 2013), the characterization employed for the mosaics
manufacturing is usually performed based on destructive laboratory
techniques and their study needs the involvement of experts specialized
in this topic. Visual inspection of the samples remains a critical param-
eter for any kind of preservation and action needed in order to match
each mosaic with the correct bedrock. Within the framework of visual
inspection, this study aims to expand the available collected knowledge
by building a spectral signature library for the case study of Cyprus, with
the spectrometric analysis carried out in the range 350–2500 nm. The
spectra contained in the library have been acquired using the HSV HR-
1024 spectrometer, which covers the visible, the near infrared, and
the short wave infrared portions of the spectrum. It must be specified
that the purpose of such analysis is not replacing the already established
techniques used for the study of the floor mosaics, but rather assisting
experts to evaluate the likelihood that a previously unseen mosaic
floor is composed by an already “known” material.

Ground spectroradiometers are non-invasive and non-destructive
instruments and therefore can be easily integrated in the study of
floormosaics, and have beenused in the past for supporting archaeolog-
ical research, e.g. for the identification of buried archaeological remains
(i.e. crop marks) or to study geological formations for remote sensing
applications (Agapiou and Hadjimitsis, 2011; Alexakis et al., 2012).

The paper is structured as follows: in Section 2 the overall method-
ology of the study is presented along with the equipment used. The
spectral signatures of all samples are described in Section 3, while
Section 4 focuses on the application ofstate of the art spectral analysis
techniquesto retrieve reliable and robust categorization results for the
available samples. The paper concludes with Section 5 highlighting
some of the potential use of this approach within archaeological re-
search of floor mosaics, as well as the overall novelty of the work and
possible future expansions.
2. Methodology

The flowchart in Fig. 3 evidences themethodological approach of the
spectroradiometric analysis.
Fig. 3. Flowchart evidencing the main st
Laboratory spectroradiometric measurements were taken for 35
samples of bedrock which have been employed in ancient Cypriote
floor mosaics. The spectra have been acquired with the HSV HR-1024
spectroradiometer, which features a spectral range from 350 nm to
2500 nmand 1024 spectrally narrowbands. The time needed for the ac-
quisition of the spectral signature is in the interval of 1–10 ms and the
data are stored in ASCII format. The Field of View (FOV) was set to 4°.

A detailed catalogue of the samples is provided in Fig. 4. For each
sample a detailedmineralogical analysis usingmainly X-ray diffractom-
etry has been carried out by Charalambous (2012), indicating the per-
centage of the various minerals composing every single sample. For
instance, the bedrock for sample 1 (Ash limestone) is composed by
98% of calcite and 2% of quartz. The mineralogical composition of all
samples examined in the present study is given in Table 1 (see Section
3). For each sample five spectral measurements were recorded, and
for each measurement the instrument was set to calculate the mean
value of three simultaneous spectral profiles. The measurements were
taken in the dark room of the Cyprus University of Technology, and a
reference spectralon panel was used for calibrating the incoming radi-
ance. The spectroradiometerwas placed in a close proximity to the sam-
ples (approximately at a distance of 10 cm in a nadir view).

Subsequently, the measurements were analyzed in order to remove
noisy spectral regions, and the intra-correlation between the samples
was calculated. Finally, spectral unmixing techniques were applied in
order to classify the samples into homogenous groups based on their
mineralogical composition (Fig. 5).

The overall methodology applied in this study is composed by six
main steps, as follows: (1) Clustering of the samples based on k-
means classifier; (2) Laboratory spectroradiometric measurements;
(3) Analysis and removal of noisy spectral bands; (4) Samples intra-cor-
relation analysis (identification of the most relevant spectral bands
based on mutual information); (5) Classification of the samples using
spectral unmixing techniques and (6) Evaluation of the results.

3. Spectral signatures

Fig. 6 presents the spectroradiometric measurements for several
samples of Fig. 4, for the range 350–2500 nm. Some spectral regions
exhibiting a low Signal-to-Noise Ratio (SNR) (e.g. 350–400 nm) were
removed from the graph. Several samples have similar spectral
eps of spectroradiometric analysis.
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responses with relative low reflectance values (less than 35% for each
band in the spectral range under examination). Therefore, a critical as-
pect of this studywas to identify spectral regions that aremore informa-
tive for the discrimination of the samples, and to cluster the different
materials by finding natural groupings among them, verifying their cor-
respondence to the different mineralogical compositions.
Fig. 4. The table reproduces the photographic docum
Table 1 summarizes the percentage of mineralogical composition of
each sample examined in this study. Several samples are mainly com-
posed by calcite with some exceptions such as sample 16 (75% Feldspar)
or sample 19 (71% Feldspar) etc. The last three columns report the results
of grouping materials with homogenous mineralogical composition
through unsupervised clustering using the k-means classifier using as
entation of the samples examined in this study.
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Table 1
Mineralogical composition of the samples and the results from k-means unsupervised classification.

Samples mineralogical composition in % Classes of k-means classifier  
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K = 3 K = 5 K = 8

1 92 6 1 1 2 4 6

2 23 74 2 1 3 1 3

3 99 1 2 4 4

4 84 4 10 1 1 2 2 8

5 97 3 2 4 4

6 95 4 1 2 4 6

7 94 5 1 2 4 6

8 48 45 1 6 3 5 2

9 96 4 2 4 6

10 97 2 1 2 4 4

11 4 6 3 2 10 75 1 3 1

12 1 92 3 4 3 1 3

13 19 3 71 7 1 3 1

14 89 1 10 2 2 8

15 99 1 2 4 4

16 98 1 1 2 4 4

17 34 66 3 1 2

18 1 99 3 1 3

19 99 1 2 4 4

20 79 1 8 2 3 7 3 1 3

21 99 1 2 4 4

22 8 73 1 7 1 9 1 3 1 3

23 59 9 32 2 5 5

24 39 61 3 1 2

25 94 6 2 4 6

26 80 20 2 2 7

27 57 71 1 1 3 1 2

28 20 72 1 6 1 3 1 3

29 49 42 1 2 4 3 3 5 2

30 98 1 1 2 4 4

31 98 2 2 4 4

32 98 2 2 4 4

33 91 9 1 3 1

34 100 3 1 3

35 95 1 2 4 4
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Fig. 5.Map of western Cyprus indicating Mamonia complex, the main resource provenance of mosaic tesserae.
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input the known material compositions. The parameter k which prese-
lects the number of clusters has been set to 3, 5, and 8, respectively. The
results identify outliers in the samples (e.g. sample 56 with more than
91% of Serpentine) and group “similar” mineralogical composition. In
the table, samples representedwith the same color for each cluster belong
to the same category. As the number of classes’ increases, samples with
different compositions are divided into subclasses, as expected.
Fig. 6. Example of spectral signature profiles taken from the sam
4. Results

4.1. Pre-processing of the spectral signatures

The following experiments were carried out based on the spectral li-
brary obtained by collecting all the available spectral signatures, as
descripted in the previous sections. Each spectral signature is associated
ples shown in Fig. 4, acquired in the range of 350–2500 nm.
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with the description regarding the geological formation and mainly
mineralogical characterization of the samples. Based on this informa-
tion, 43 spectra not presenting a dominant mineralogical element in
their composition (above 75%), were removed from the library. The re-
maining 143 spectra presented a dominant element in their composi-
tion, this being either calcite, quartz, or serpentine. This is roughly
similar to the categorization of the samples using k-means with k = 3
in Table 1, as two clusters identify materials mostly composed respec-
tively of quartz and calcite, while a third groupmostly contains samples
composed of other materials.

The spectral library was further analyzed to remove spectral bands
with low informational content, which was quantified for this purpose
for each spectral band, in order to discriminate bands useful to separate
the spectra belonging to the three mineralogical elements listed above.

Initially, the correlation between all the bands was computed to
highlight dependency and shared information between each spectral
band and all the others. For this purpose, the correlation for any two
bands x and y in the spectral library was computed as follows:

rxy ¼
Xn

i¼1
xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xi−xð Þ2

Xn

i¼1
yi−yð Þ2

q ð1Þ

where x and yare the mean values for any two spectral bands xi and yi,
computed for n different samples. Fig. 7 displays the correlations for
all the bands: high values of correlation indicate high similarity between
bands at two given frequencies, while low correlation indicates inde-
pendence of information. As it is desired to keep all spectral bands
which present unique information and have less correlation with
others, four main spectral regions were identified, which have high
intra-correlation: the visible range from approximately 400 to
700 nm, the Near Infrared (NIR) from 700 to 1400 nm, and two ranges
in the Short Wave Infrared (SWIR), approximately from 1450 to
2000 nm and 2000 to 2500 nm respectively. Around 2350 nm a narrow
Fig. 7. Correlation between bands for the acquired spectra. Visible, near infrare
spectral range appeared to be less correlated to the neighbouring bands,
indicating that it could be important to discriminate different targets.
The spectral range from 1450 to 2000 nm appeared to be the less infor-
mative, as it presents a high correlation with the second portion of the
SWIR, but also a relevant correlation with the NIR.

As important as correlation is, this could be however considered in-
sufficient in estimating the discrimination power of a given band or
spectral range. For this purpose, measures quantifying the shared infor-
mation between the data at handwith some kind of existing labelling or
categorization must be used.

An important issue of the informational content analysis is the esti-
mation of the amount of information shared by two objects. From
Shannon's probabilistic point of view, this estimation is done via the
mutual information I (X, Y) between two random variables X and Y,
which measures the amount of information that can be obtained
about one random variable by observing another, and is defined as:

I X; Yð Þ ¼
X
x;y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ ð2Þ

where X and Y are two random variables, p(x) is the probability that the
variable X generates an outcomewith value x, or p(X= x), and p(x,y) is
the joint probability of x and y to happen together (Cover and Thomas,
2012). The mutual information is a symmetric quantityI(X,Y)≥0, with
equality if and only if X and Y are independent, i.e. X provides no infor-
mation about Y. Considering at this stage X as the values assumed by a
single spectral band in all samples, and Y as an array in which the dom-
inant materials for each spectrum are labelled from 1 to 3. The mutual
information indicates if changes in the values of each band correspond
in practice to a change in the dominant object of the spectrum. The com-
puted mutual information between each spectral band and an array
containing the dominant material for each acquired sample is reported
in Fig. 8.
d, and two different ranges in the short wave infrared are easy to identify.



Fig. 8.Mutual Information between each spectral band and the different dominant types of rocks of which the mosaics are composed.
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From the mutual information analysis it can beobserved that the
spectral range going approximately from 1000 to 1900 nm is not as dis-
criminative as the ranges 400–1000 and 1900–2500, and also relying on
previous analysis on correlation it was decided to exclude this range
from further analysis, removing the corresponding bands from the
dataset, in order to mitigate the effect of Hughes phenomenon, also
known as curse of dimensionality, which decreases the accuracy of the
results when working in a space with very high dimensionality.
4.2. Spectral unmixing and classification

The process of spectral unmixing aims at decomposing each spec-
trum into a linear (or less often non-linear) combination of signals.
These represent the backscattered solar radiation in each spectral
band if the reference spectra are selected within the image. Alternative-
ly, the spectra may be collected in an external spectral library acquired
in laboratory. The considered reference signals are typically composed
of a single pure material or a homogeneous intimate mixture of mate-
rials. Such spectraare often called endmembers (Bioucas-Dias et al.,
2012) and must be identified.

For this purpose, Vertex Components Analysis (VCA) (Nascimento
and Bioucas Dias, 2005) was applied to the set of spectra in order to
identify the purest ones, i.e. spectra which cannot be expressed as a lin-
ear combination of the other elements in the dataset. Subsequently, one
endmember for each of the three dominant classes described abovewas
identified and a spectral unmixing of all elements in the datasetwas car-
ried out.

The output of a spectral unmixing process is a set of abundances
values, quantifying the contribution of each reference spectrum to a
Table 2
Classification according to the highest abundance after spectral unmixing results.

Predicted dominant material

Calcite Quartz

Actual dominant material Calcite 90 18
Quartz 3 27
Serpentine 0 0
given pixel. Therefore, a pixel m could be expressed as:

m ¼
Xk

i¼1

xisi þ r ð3Þ

where x1…xk and s1…sk are the fractional abundances for the k avail-
able and pre-selected reference spectra, while r is a residual vector con-
taining the portion of the signal which cannot be represented in terms
of the basis vectors of choice. Therefore, if in a scene only mixtures of
two materials in each pixel are presented, for example water and soil,
m could be expressed asm=xwaterswater+xsoilssoil+r.

The spectral unmixing problem in Eq. (3) was solved by regression
using the Least Squares approach, enforcing the non-negativity con-
straint on the fractional abundances in order not to have negative frac-
tions which would have no physical meaning. Afterwards, a spectrum
was assigned to a dominant class according the highest abundancy
computed in the spectral unmixing step, i.e. a spectrum was assigned
to class 1 if x1 had the maximum value among the abundances x1…xk
after solving Eq. (3).

The results of the described classification procedure are reported in
Table 2. Here the overall accuracy is the total percentage of samples cor-
rectly assigned to their dominantmaterial, while the average accuracy is
themean accuracy obtained per class. Results are encouraging and sug-
gest that different spectra could be successfully categorized at this stage
according to the mineralogical composition of the samples. As demon-
strated in Table 2, calcite, quartz and serpentine are detected and iden-
tified from spectroradiometric analysis with an accuracy of 83.3%, 90%
and 100% respectively. The overall accuracy of all samples dominant
material is 86%, while the average accuracy per class is 91%. The
Serpentine Accuracy Overall accuracy Average accuracy

0 83.3% 86% 91%
0 90%
5 100%
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reported confusion matrix highlights some remaining confusion be-
tween calcite and quartz. These two minerals have a similar structure
and can both assume a variety of colors, such as purple, white, brown,
pink and gray (see some examples in Table 1). Therefore, applying spec-
tral unmixing algorithms tomixtures of these twomaterials is known to
present some difficulties (Rodricks, 2007).

5. Discussion

As shown earlier, discriminant analysis of dominant materials used
in floor mosaics based on unmixing techniques was achieved with
high accuracy. Despite the complexity and the similarity of the samples,
the unmixing application was able to detect calcite, quartz and serpen-
tine with an accuracy of 83.3%, 90% and 100% respectively. This high ac-
curacy indicates that such approach can be followed by researchers to
rapidly detect and recognize dominant materials in new floor mosaics
during field campaigns as well.

The measurements for the above examined geomaterial samples
were achieved in an indoor laboratory with controlled environmental
conditions. On the contrary, field spectroscopy is susceptible to various
types of external noises such as atmospheric effects, shadows etc.
Therefore, additional caution should be taken during field spectral sig-
natures recording, while calibrated reference spectralon panel should
be also used prior to any measurements. The measurements in the
field should be taken between the hours 10:00 a.m. and 14:00 p.m. to
minimize the impact of sun illumination from a nadir point of view
(Milton et al., 2009; Milton, 1987; Agapiou et al., 2013).

It is important to highlight that the spectral profiles of the samples
do not identify directly the dominant minerals, neither automatically
retrieve information on the samples chemical composition. However,
if a complete spectral library is made available through the systematic
collection of measurements, researchers will be able to assign directly
a specific spectral profile to a specific mineral and thereafter proceed
to its characterization and quantification. For this purpose, it is likely
that a large spectral library should be collected: as traditional unmixing
algorithms require the number of elements in the library to be smaller
than the number of bands in the spectra, sparse unmixing techniques
should be employed, which allow approximate solutions of such over-
determined systems (Bioucas-Dias et al., 2012).

Future work on spectroradiometric measurements of floor mosaics
includes recording and observing the alterations of spectral profiles,
correlated to deterioration factors as a result of environmental impact
to the outdoor exposed mosaics.

6. Conclusions

Spectral signatures related to35 samples of natural rock, directly linked
to floor mosaic tesserae identified as such by previous studies, have been
acquired in the range of 350–2500 nm and analyzed.The k-means algo-
rithm has been applied using as input features the known rocks composi-
tions in order to have a preliminary categorization of the dataset.
Subsequently, the purest spectra have been identified in the dataset to
be used to classify the data in groups roughly corresponding to the output
of the k-means clustering. Finally, statistical analysis and spectral
unmixing techniques have been applied to identify the natural rock-geo-
logical provenance of the samples according to their spectral features.
The results were found promising since a high accuracy was achieved.

The results of the present paper have been carried out on a small-
sized dataset. Future experiments will be validated using a larger num-
ber of samples from different geological formations of the island. The
final objective is deriving a coherent spectral library to be introduced
in the already existing Cypriot floor mosaics database, assisting experts
going a step further in identifying relations between mosaic tesserae
and their provenance. This database will also be linked to the geograph-
ical position of the mineral samples used and the related mosaics,
through a Geographical Information System (GIS).
In the future spectroradiometric analysis in situ or in lab could
thenoffer a fast preliminarymineralogical characterization of new mo-
saics/mosaic tesserae, contributing to identify their provenance as well
as aid in conservation practices (e.g. selection of materials to integrate
missing parts).

Portable spectroradiometers, easy to use in the field, can therefore
further assist on-going excavations. Indeed, they can represent a useful
toolfor conservation science whenever circumstances require a quick
decision (e.g. rescue excavations), eventually in lack of time for the ac-
complishment of traditional laboratory analysis.The described tech-
niques cannot substitute traditional archaeometric analysis for ancient
material identification, but can provide for them an efficient and non-
invasive support tool.
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