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A B S T R A C T

Filtering data generated by so-called Voting Advice Applications (VAAs) in order to remove

entries that exhibit unrealistic behavior (i.e., cannot correspond to a real political view)

is of primary importance. If such entries are significantly present in VAA generated

datasets, they can render conclusions drawn from VAA data analysis invalid. In this work

we investigate approaches that can be used for automating the process of identifying

entries that appear to be suspicious in terms of a users’ answer patterns. We utilize

two unsupervised data mining techniques and compare their performance against a well

established psychometric approach. Our results suggest that the performance of data

mining approaches is comparable to those drawing on psychometric theory with a fraction

of the complexity. More specifically, our simulations show that data mining techniques as

well as psychometric approaches can be used to identify truly ‘rogue’ data (i.e., completely

random data injected into the dataset under investigation). However, when analysing

real datasets the performance of all approaches dropped considerably. This suggests that

‘suspect’ entries are neither random nor clustered. This finding poses some limitations on

the use of unsupervised techniques, suggesting that the latter can only complement rather

than substitute existing methods to identifying suspicious entries.
c⃝ 2016 Qassim University. Production and Hosting by Elsevier B.V.
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1. Introduction

In this paper we draw on data generated by an EU-wide
Voting Advice Application (VAA), called EUvox. VAAs are
freely available web tools that match the preferences of
voters to that of candidates or political parties [1–5]. The
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mechanism of the VAA is simple. A set of experts compile
a collection of important issues or policy statements, Q =

{Q1, Q2, . . . , Qk}, upon which users have to express their
opinion by selecting one of several categories (or answers).
In the majority of cases the number of policy statements
(referred to also as questions or items) is 30. Furthermore,
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the possible answers are defined as a Likert scale with the
following options: ‘Strongly Disagree’, ‘Disagree’, ‘Neither
Agree nor Disagree’, ‘Agree’, ‘Strongly Agree’, as well as a ‘No
opinion’ category that are encoded as follows: 1 = ‘Strongly
Disagree’, 2 = ‘Disagree’, 3 = ‘Neither Agree nor Disagree’,
4 = ‘Agree’, 5 = ‘Strongly Agree’, and 6 = ‘No opinion’. Thus,
every answer can take values in the set A = {1,2,3,4,5,6}.
Moreover, we define Si to be the sequence of answers of the
ith user to the policy statement (e.g. Si = 2,4,3, . . . ,1,6,5),
where |Si| = number of policy statements. Let us denote with

aj
i to be the jth element (j ∈ {1,2, . . . , |Si|}) of the ith sequence

(typically in a VAA setting this sequence corresponds to the
filled in questionnaire of the ith VAA user).

In the absence of any prior information the probability to
get any of the values in A is uniform, i.e.,:

p(aj
i = k) =

1
|A|

, (1)

where k ∈ A. In practice, however, because the sequences are
generated by voters that express a finite (actually a small)
number of political views some answers are more probable
than others. For instance, the positive and negative answers
in the middle categories of the scale (i.e., Disagree, and
Agree) are more probable than the extreme ones (i.e., Strongly
Disagree, and Strongly Agree); this is due to the tendency
of humans to avoid taking extreme positions in political
statements such as those included in a VAA [6]. Furthermore,
themeaning of a ‘No opinion’ response category attracts itself
a special research interest, while its probability of appearance
is in general lower than other response options [6]. Fig. 1
depicts the distribution of responses for each of the 30 policy
statements for one of the datasets – Ireland – that is used in
this paper.1

Thus far, we have not taken into consideration the content
of the policy statements. In a real setting, however, where
users are completing a VAA questionnaire to receive a vote
recommendation, there is a highly influential factor that
conditions the selection of answers to policy questions:
the political view or ideology of a user. It is precisely for
this reason that analysts have used VAA generated data to
study the dimensionality of the political space by identifying
configurations of latent dimensions, such as a left–right or
liberal–conservative [7–10]. The fact that most users have
a political ideology ensures that there is some degree of
consistency in answer responses. For instance, if a user
has right-wing political preferences for policy A, B and C
they are also likely to have a right-wing political preference
for policy D. Evidently, this assumes that A, B, C and D
hang together in the policy space. VAA designers have some
a-priori knowledge about established dimensions of political
competition and design their questionnaires to include
groups of policy items that are related to each other [11,9,10].
For instance, the EUvox had three categories related to
(1) Europe, (2) economy and (3) broader societal issues. Most
users’ response patterns would therefore entail some degree
of ideological consistency across these dimensions. This has
important implications since it makes some sequences of
answering patternsmore probable than others, which renders

1 See Section 3 for more information about the datasets used.
any assumption concerning the independence of VAA policy
statements invalid. In a mathematically rigorous way this
can be stated as follows: let S = {S1, S2, . . . , Sn, } be a set
of sequences produced by n VAA users. The conditional
probability P(Si|S) is very different than the probability P(Si). If
we assume independence between the VAA statements then
P(Si) and P(Si|S) can be computed as follows:

P(Si) =

n
j=1

p(aj
i) (2)

and

P(Si|S) =

n
j=1

p(aj
i|S). (3)

If a ‘legitimate’ VAA user is likely to answer the question-
naire in an ideologically structured manner, and this applies
to most users attracted to a VAA, then randomly and incon-
sistently generated sequences are likely to be quite rare in
a real VAA setting. If such sequences in S exist, then they
would constitute suspicious entries and should be removed
prior to performing any data analysis. We know from vari-
ous studies that VAA data do contain rogue entries although
to our knowledge no filtering is undertaken using structured
pattern analyses of responses (see [12,13] for a review). Cur-
rent best practices [14,3,15–17,13] remove entries by collect-
ing and utilizing some para-data (such as total time taken to
complete questionnaire and IP filters). These have sometimes
been complemented with the removal of entries with dubi-
ous answer patterns, such as too many ‘No opinions’ or many
consecutive same answer responses. Such filters are easy to
implement and do not require any sophisticated analysis—
though they can become quite arbitrary. If researchers are se-
rious about their cleaning methods, a powerful case has been
made for the need to collect data based on individual item re-
sponse timers [12]. As we shall see below, this paper builds on
this key insight.

The identification of suspect entries in questionnaires is
a field of study within psychometrics (see [18] for a review).
Specifically, there is a literature derived from Item Response
Theory that focuses on identifying such inconsistencies in
test scores such as exams [19,20]. In data mining terms
these inconsistencies are usually described as anomalous
and there exists within the field a number of unsupervised
anomaly detection techniques that are applied in different
areas and disciplines. For example unsupervised anomaly
detection can be used for intrusion detection [21,22], for
fraud detection [23,24], in medicine for disease detection [25]
and for prescription control [26], in image processing for
identifying foreign object [27,28], and in text data for novelty
detection [29]. However, to the best of our knowledge,
there is very limited literature on applying data mining
techniques to data consisting of responses to Likert items, as
is the case in VAA questionnaires. [30] applied a number of
both supervised and unsupervised techniques for extracting
patterns in students’ evaluations of their instructors where
Davier in [31] used data mining techniques to address the
problem of testing quality control.



174 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S 3 ( 2 0 1 6 ) 1 7 2 – 1 8 2
Fig. 1 – Distribution of answer for the 30 statements in the Ireland dataset—EUVox 2014 (see Section 3 for more
information about the dataset).
2. Background

Below we describe two approaches that could be applied to
the problem of suspect detection in online self-administered
surveys. The first outlines the basic intuition behind the
psychometric approaches before moving on to some specific
data mining techniques.

2.1. Psychometric

The psychometric approach to identifying suspect answering
responses involves two steps (this procedure draws on the ap-
proach of [19]). The first step is to reduce the dimensionality
of the data to yield meaningful scales—in the case of VAA
generated data these are scales measuring the same underly-
ing, latent ideological trait. We draw on Mokken Scaling Anal-
ysis (MSA) [32,33], which is a psychometric method of data
reduction that has been applied to VAA data by political sci-
entists to identify unidimensional scales that consist of hier-
archically ordered items measuring the same latent concept,
such as a left vs. right scale or a socially conservative vs. so-
cially liberal scale [11,8–10].2 MSA is a non–parametric tech-
nique derived from Item Response Theory within the field of
psychometrics. It is a scaling technique in which the proba-
bility of an answer to a particular item (question) depends on

2 Specifically, we use the Monotone Homogeneity Model (MHM)
originally proposed by Mokken in 1971 for dichotomous items and
extended by Molenaar [33] to polytomous items.
Table 1 – Policy statements per dimension.

Country Dimension
EU Economy Culture

Ireland 1–4, 6, 7 11–15, 20 24, 25, 27–30
Greece 1, 2, 4, 6, 7, 10 10–16, 18, 19 21, 22, 25–30
England 1–6, 9, 10 11–16, 19, 20 21, 23, 24, 25, 27–30

the characteristics of the item, such as its ‘difficulty’ (popu-
larity). The MSA yields scales (groups of items) that are hy-
pothesized traits or attributes of a non-directly observed la-
tent construct. A scale is assessed with two tests that offer
scalability coefficients: the item-specific Hi and the overall H.
According to common rule of thumb these should both >0.30.
For the analysis performed in this paper, the MSA was im-
plemented in R using the mokken package. The MSA yielded
three substantively meaningful scales related to (1) attitudes
towards Europe (pro EU versus anti EU); (2) the economy (left
vs. right) and a (3) cultural scale (socially conservative versus
socially liberal attitudes) that satisfied the empirical tests. Ta-
ble 1 shows the policy questions that were grouped per di-
mension for each of the datasets.

After scaling analysis is performed to identify three uni-
dimensional scales we can use person-fit statistics to identify
aberrant answering patterns. These statistics all draw on
the number of so-called Guttman errors in a hierarchically
ordered scale (i.e., such as those yielded by the MSA). The
basic intuition can be illustrated with a simple example.
Consider a latent dimension or scale that measures social
liberalism, where 0 means socially conservative and a high
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score means socially liberal attitudes. Furthermore, assume
that the scale consists of three items with dichotomous
answer categories (no/yes) and that the items are ordered in
terms of their expected ‘difficulty’ or popularity as follows:
Q1 Gay couples should enjoy basic rights; Q2 Gay couples
should be allowed to marry; Q3 Gay couples should be
allowed to adopt children. Now consider the following answer
patterns: user 1 [1,1,1]; user 2 [0,0,0]; user 3 [1,0,0] and user
4 [0,0,1]. User 1 possesses a high ‘test’ score (3) on the
latent trait of social liberalism, whereas the score of user
2 (0) would be indicative of extremely socially conservative
attitudes. While on different sides of the scale, both answer
patterns are consistent. Now consider users 3 and 4, both
of whom have the same score of 1 on the latent trait being
measured. Although their scores are the same, user 4 clearly
exhibits an aberrant answer pattern. The difference can be
expressed in the number of Guttman errors, which refers to
answering a more ‘difficult’ (in practice the less popular) item
correctly and an ‘easier’ (more popular) item incorrectly. In
our illustration users 1, 2 and 3 have 0 Guttman errors while
user 4 has 2 Guttman errors.3

2.2. Data mining

As mentioned earlier, the goal of this work is to identify en-
tries in S that exhibit irregular behavior and deviate much
from the norm using unsupervised machine learning tech-
niques.4 For doing that, a two step process was introduced.
The first was to use a clustering method that clusters S into
m clusters. This can be formally defined as:

C = {C1, C2, . . . , Cm}, (4)

where Ci ⊂ S, Ci ∩ Cj = ∅, |
m

i=1 Ci| = |S|. Then, an anomaly
detection approach for identifying outliers in each generated
cluster will be applied; identified entries will be marked as
suspicious.

The unsupervised clustering method selected was the
Expectation Maximization (EM) [34,35]. This is because EM
is a probability based approach assuming gaussian mixture
observations, and also it does not require the specification of
any hard to extract parameters (e.g., k in k-means, epsilon and
minPts in DBScan).

EM is an efficient method that solves the Maximum
Likelihood Estimation (MLE) problem; that is, given a set
of parameters Θ , assign values to Θ so that the likelihood
function is maximized. For example, in the case of a gaussian
mixture model Θ = (a, {µk}, {Ck}), where a is a probability
mass function over the different models, {µk} is the set of
means one for each model, and {Ck} a set of covariance
matrices one for each model. Given the aforementioned
model and Θ , the likelihood function estimates the model to
which an observation belongs to.

3 The Guttman errors are calculated by summing the item pairs
that are [0,1]. Item pairs [0,0], [1,1] or [1,0] do not represent
violations. For instance an answer pattern for a user 5 [1,0,1] has
1 Guttman error.

4 Using unsupervised rather than supervised machine learning
techniques was a deliberate decision due to fact that we would
like to avoid the dubious process of labeling the data.
Estimation Maximization is an iterative process that is
repeated until convergence. During the fist step (known as
E-step) EM computes a probability distribution Q over a
set of latent variables z given a set of observation x =

{x1, x2, . . . , xm}, using Θ . In the second (known as M-step)
a probability distribution of new parameters are calculated
using the distributions computed during the first step. The
above can be formally defined as follows:

Q(zi) = p(zi|xi;Θ), where i ∈ {1,2, . . . |x|} (E-step) (5)

and

Θ = argmax
Θ

m
i=1


zi

Q(zi) log
p(xi, zi;Θ)

Q(zi)
(M-step). (6)

In our case, the likelihood function assigns a cluster to each

Si.

Clusters created by the EM function could potentially rep-

resent user groups with different ideologies. The next step

is to use an outlier detection technique in order to iden-

tify anomalous entries inside each of the generated clus-

ters. All such entries will be marked as suspicious. For doing

so, two techniques where adopted: (1) a simple Mahalanobis

distance [36], and (2) a hi-dimensional outlier identification

called PCOut [37].

The Mahalanobis distance [36] is an estimator that calcu-
lates the distance between an observation x = {x1, x2, . . . , xm}

and a distribution D defined by its mean, µ, and covariance,
C, matrices. Formally this is defined as:

dM(x) =


(x − µ)TC−1(x − µ). (7)

Having calculated the distance of a point x in terms of how

many standard deviations away x is from the mean of D,

identifying outliers only requires the definition of a distance

threshold that separates normal from anomalous observa-

tion. This threshold is application specific and is defined in

the next section.

The second method is called PCOut [37] and it consists
of two distinct phases; the first deals with location outlier
detection (data point that lay far way from the average of a
model) and the second with scatter outlier detection (data
point that emanates from a different model). Both phases
utilize robust distance estimators5 (robust Mahalanobis and
Euclidean distances respectively) for producing two weights
w1 and w2 respectively. The final weight of an observation x
is defined as:

wx =
(W1x + s)(W2x + s)

1 + s2
(8)

where s is a scaling contact. An observation x is an outlier if

wx < s.

5 Estimators, like Mahalanobis distance, can become biased
in the case of highly contaminated datasets (i.e. contain many
outliers). Robust estimators try to alleviate this by reducing the
influence of the outliers on the estimator through a weighting
function.
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3. Datasets

The datasets used in this paper derived from a special
transnational VAA, the EUvox, which was used during the
2014 European Parliament elections. The uniqueness of this
VAA derives from the fact that EUvox was essentially a
collection of VAAs that corresponded to a different EU
member state6 with a high overlap (above 70%) of identical
policy statements. The EUvox was running for a period of
one month (end of April until end of May 2014) during which
the datasets presented in this work were collected. Data
from three instances of EUvox that generated datasets of
varying sizes have been selected: (1) the datasets of Ireland
(7k entries), (2) Greece (55k entries), and (3) England (115k
entries). Detailed analysis of all data collected by the EUvox
VAA is well beyond the scope of this paper and we therefore
concentrate on these three datasets of varying sizes—small,
medium and large.

We can formally define the dataset in terms of users’
answers. Consider a dataset as a set S = {S1, S2, . . . , Sn}

(i.e., the answers of all users). Si = {a1i , a2i , . . . , am
i } is the

answers of a particular user, |Si| = 30, and aj
i ∈ A, where

A = {1,2,3,4,5,6}. Furthermore, each answer is associated
with a time interval designating the time required for a
user to answer a policy statement. We formally define this
as T = {T1, T2, . . . , Tn}, where Ti = {t1i , t2i , . . . , tmi }, |Ti| =

30, and tji ∈ Z∗ (i.e., the granularity is in seconds), and

tji = aj
i. In our case, T was utilized for assigning a label7

Yi = {‘Valid’, ‘Suspect’} to each entry in a dataset. For formally
defining the labeling process, we should first provide some
domain specific definitions.

Definition 1. A timer violation is defined as an entry in Ti,

where aj
i ≤ 2.

The above definition derives from the assumption that it
is humanly impossible to read a policy statement, process the
information, and provide an answer in less than two seconds.

Definition 2. An entry Si is labeled as ‘Suspect’ if the number
of timer violations lies above the 97%-quantile of the average
violations of the particular instance.

The intuition behind Definition 2, is that only entries with
many violation, well over the average number of violations
in the instance are marked as ‘Suspect’. Thus for each
instance the distribution of timer violations is calculated for
extracting a number that corresponds to the 97%-quantile of
the instance’s timer violations.

After applying the aforementioned procedures on the
three datasets, each dataset was saved as a csv file consisting
of 31 columns. The first 30 columns represented S, and the
last column Y, contained the label of each entry. Table 2
summarizes some of the statistical information of the three
datasets.

6 Some countries were split into regions.
7 Please note, that labels are only used for performance

validation and not for clustering since only unsupervised
methods are considered in this work.
Table 2 – Datasets information.

Country 97%-quantile Suspects Valid Total

Ireland 8 220 7014 7216
Greece 5 1528 54 019 55547
England 8 3393 111 128 114521

An additional step was the creation of a simulated dataset.
More specifically, for each of the datasets we created a
simulated copy where all ‘Suspect’ entries were replaced by a
random sequence. This resulted in a total of 6 datasets, three
original and three simulated. The purpose of the simulated
datasets was the creation of suspicious entries that exhibited

completely random behavior (i.e., P(aj
i) =

1
|L|

). By running the
simulation we are therefore able to evaluate whether it is, in
principle, possible to identify true ‘rogue’ data. Furthermore,
by comparing the performance of the different approaches
on each pair of datasets (i.e., the simulated and the original)
one can extract some information regarding the pattern
(i.e., randomness) of ‘Suspect’ entries in the original datasets.

4. Methodology

4.1. Psychometric

Psychometricians use person-fit statistics, which are an ex-
tension of the Guttman error logic, to identify atypical
answer patterns in tests or surveys [18]. We test two person-
fit statistics that have been recently developed to deal with
polytomous data and which are therefore ideally suited for
EUvox data in which the number of answer options is not
dichotomous [19,20]. The analysis is carried out using the R
package, PerFit [38], which implements two person-fit statis-
tics suited to data that has been preprocessed using a non-
parametric Item Response Theorymodel such asMSA.We use
the Gnormed.poly function, which calculates the number of
Guttman errors for polytomous items, and the U3poly person-
fit statistic, which generalizes van der Fliers [39] dichotomous
U3 person-fit statistic to polytomously scored items. We de-
rive three person-fit statistics for every user, one for each of
the three scales identified through the MSA (see Section 2.1
for details). The coefficients are calculated to range from 0–1,
where a high score indicates aberrant answer patterns. Be-
cause falsely rejecting the null-hypothesis in most applica-
tions of person-fit statistics will not have large consequences
Meijer et al. [20] have suggested using a 5% or 10% Type 1 error
rate or cut off point to identify the most aberrant answer pat-
terns. We use the more conservative 5% cut off point, i.e., all
users above the 95%–quantile for any one of the three scales
are flagged as suspect entries.

4.2. Data mining

For identifying suspicious behavior in a VAA generated
datasets based on data mining approaches, we use two
high dimensional anomaly detection methods; that is maha-
lanobis distance and PCOut.

Mahalanobis distance was utilized for measuring the
distance in the high dimensional space of a data entry (i.e., a
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Table 3 – Summary of evaluation for the simulated dataset.

County Ireland Greece England

Method Sens Spec Sens Spec Sens Spec

Mahalanobis
Clustered 0.17 0.95 0.37 0.96 0.00 0.96
Un-clustered 0.66 0.95 0.53 0.95 0.73 0.95

PCOut
Clustered 0.63 0.83 0.13 0.82 0.50 0.81
Un-clustered 1.00 0.78 1.00 0.78 1.00 0.80

Psychometric
Gnormed 0.84 0.99 0.67 0.89 0.63 0.90
U3 fit 0.81 0.89 0.63 0.89 0.67 0.90
Table 4 – Summary of evaluation for the original dataset.

County Ireland Greece England

Method Sens Spec Sens Spec Sens Spec

Mahalanobis
Clustered 0.17 0.96 0.09 0.96 0.04 0.96
Un-clustered 0.16 0.95 0.16 0.95 0.07 0.96

PCOut
Clustered 0.30 0.83 0.30 0.80 0.21 0.79
Un-clustered 0.39 0.74 0.33 0.76 0.21 0.78

Psychometric
Gnormed 0.25 0.87 0.23 0.88 0.12 0.88
U3 fit 0.26 0.87 0.23 0.88 0.12 0.88
point in the hypersphere) from the centroid of its group. Then
for each group the mean and the standard deviation of the
distance were calculated; outliers are defined as all points
whose distance deviate more than two standard deviations
from the average. For the second method used, PCOut, there
is no requirement to specify the number of parameters for the
identification of outliers. What has to made clear however,
is that the final output of both methods is similar: that is
a dataset where every entry is classified as either ‘Valid’ or
‘Suspect’.

Both of the aforementioned methods were implemented
in R. For the former approach, an in-house built code was
implemented facilitating the classification. For the latter,
the Multivariate outlier detection based on robust methods
(mvoutlier) [37] was utilized.

The performance of the two approaches was evaluated
on twelve datasets, the three original datasets and the three
datasets that contained simulated rogue entries. In addition
the EM clustering technique produced a further six new
datasets. This is driven by the assumption that clustering
will result in the creation of more coherent subsets where
anomalies would be easier to identify.

5. Results and analysis

This section presents a summary of the results generated
by the different approaches. We use the ‘Sensitivity’ and
‘Specificity’ metric to evaluate performance in terms of
‘Suspect’ detection. The metrics are formally defined below:

• True positive (TP): The number of entries labeled as
‘Suspect’ and are classified as ‘Suspect’.

• False positive (FP): The number of entries labeled as ‘Valid’
and are classified as ‘Suspect’.

• False negative (FN): The number of entries labeled as
‘Suspect’ and are classified as ‘Valid’.
• True negative (TN): The number of entries labeled as ‘Valid’
and are classified as ‘Valid’.

Using the above definitions, Sensitivity and Specificity can
be formally defined as:

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
. (10)

Sensitivity returns the fraction of correctly predicted ‘Sus-
pect’ entries from the entire ‘Suspect’ population while Speci-
ficity relates to the fraction of correctly predicted ‘Valid’ en-
tries from the entire ‘Valid’ population. Tables 3 and 4presents
the Sensitivity (Sens) and Specificity (Spec) of all the ap-
proaches for the simulated and original datasets respectively
(more detailed results can be found in the confusion matrices
presented in the Appendix).

Beginning with the simulated datasets we find quite
varied performance among the approaches insofar as the
sensitivity rate is concerned. Of the two data mining ap-
proaches the PCOut clearly outperforms the simpler Maha-
lanobis approaches. Furthermore, it is clear that un-clustered
approaches are superior to culstered approaches. In relation
to the two psychometric based approaches relying on person-
fit statistics, they both perform very similarly. The simula-
tion shows that detection of what are truly ‘rogue’ entries
can in principle be achieved, especially using the un-clustered
PCOut data mining technique and the two psychometric ap-
proaches. When we look at the performance on the real
dataset however, a very different picture emerges as can be
seen in Tables 3 and 4.

5.1. Area under the ROC curve

In this section we take a closer look at the better performing
approaches and use the area under the ROC (receiver operator
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Fig. 2 – Ireland simulated.

Table 5 – Area under the ROC curve (in %) for simulated
data with 95% confidence intervals.

Case Class AUC Lower Upper

Ireland
U3 95.13 94.2 96.07
PC.out 94.91 94.13 95.69

Greece
U3 92.97 92.47 93.48
PC.out 93.06 92.77 93.36

England
U3 97.19 97.08 97.31
PC.out 94.83 94.67 94.99

chracteristics) curve as our evaluation metric for comparing
the approaches. ROC curves and the associated area under
the curve (AUC) metric is a common way of evaluating binary
classification problems [40]. There are two good reasons for
focussing on the area under the ROC curve values: (1) it is
insensitive to unbalanced datasets and thus commonly used
for fraud detection (which makes it ideally suited to the
task at hand) and (2) it operates directly on the classification
scores and does not require the predictions to be thresholded
(e.g. assigned to one class or the other). This will be useful
for visualizing the trade-off between sensitivity (true positive
rate) and specificity (true negative rate).

The ROC curves in Figs. 2–7 present the simulated
and original dataset pairs. We plot the best performing
method from the data mining approach (PCOut) and one
of the psychometric approaches, the U3 person-fit statistic
(although we could have also used the Gnormed statistic
since they essentially perform the same). For the PCOut we
can use the probabilities directly outputted by the package to
plot the curve. In the case of the psychometric approaches we
run a logistic regression with the suspect versus valid class as
the outcome variable and use the three person-fit statistics
as predictors. We can then extract the predicted probabilities
from themodel and use this vector for plotting the ROC curve.
In addition to the plotted ROC curve, to better gauge the
performance we can compute for the area under the curve
values, as well as the 95% confidence intervals for the point
estimate (this is done in Tables 5 and 6)
Fig. 3 – Ireland original.

Fig. 4 – Greece simulated.

Fig. 5 – Greece original.
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Fig. 6 – England simulated.

Fig. 7 – England original.

Table 6 – Area under the ROC curve (in %) for original
data with 95% confidence intervals.

Case Class AUC Lower Upper

Ireland
U3 59.44 55.23 63.66
PC.out 55.81 51.51 60.1

Greece
U3 57.63 56.07 59.2
PC.out 54.87 53.35 56.39

England
U3 54.16 53.18 55.14
PC.out 51.36 50.37 52.35

5.2. Results summary

As shown in the various tables and figures, the most obvious
finding is the poor performance on the original datasets
of the proposed methods compared to the performance on
simulated data. Nonetheless, we can draw a number of
conclusions regarding both the nature of the data used and
the adequacy of the approaches used for suspect detection:

1. Timer based ‘Suspect’ entries, i.e., entries labeled as
‘Suspect’ using Definition 2 do not exhibit random
behavior. This has been demonstrated by the radically
different performance when using suspect detection
approaches on the simulated datasets compared to the
original dataset.

2. Among the Data Mining approaches, PCOut that adopts a
hybrid approach (identifies anomalous data using both lo-
cation outlier detection and scatter outlier detection), out-
perform other approaches in terms of the total number of
suspect entries identified. This suggests that two types of
suspect entries exist, those that lie far away from the cen-
troid of the model and those that do not fit the model re-
gardless of their position. Furthermore, the performance
of a general data mining approach (i.e., PCOut), is compa-
rable to more computationally intensive psychometric ap-
proaches specifically designed for this purpose.

3. All approaches work better on smaller original datasets.
This is due to the fact that all datasets regardless of the
number of their entries have a similar multidimensional
space. Thus datasets with more entries are more dense,
something that degrades the performance since the com-
plexity of identifying distinct subsets is increased.

4. Despite the fact that our original intuition was that more
coherent clustered subsets would boost the performance
of anomaly detection techniques, this was not the case.
The explanation for this is similar to that of the above
finding; clusters are more dense subsets of the original
datasets.

5. Techniques exploited in this work can supplement exist-
ing techniques but not substitute them. This is because ex-
isting techniques identify suspicious behavior, e.g., timer
violations, multiple submissions, etc. Since this suspicious
behavior is not always reflected in terms of inconsistent
response patterns, such violations cannot be identified by
the approaches described in this paper. This points to-
wards the use of combined approaches to suspect detec-
tion.

6. Discussion and future work

VAA generated datasets contain suspect entries that
correspond to click through behaviour of users that is
irrespective of the content of the questionnaire. This has
been demonstrated in the literature by collecting individual
item (question) timers [12,13]. Furthermore, it is a well-known
phenomenon in survey research, referred to as ‘satisficing’
by psychologists [41]. Current best practices identify suspect
VAA entries through para-data such as the time taken
to answer questions [16,17], the number of repeated
attempts [15–17], the answers provided to some additional,
opt-in questions [14,3,10] as filtering methods. Techniques
relying on users’ answer patterns are at a very primitive stage,
consisting mainly of filtering out users with a predetermined
number of consecutive same answer patterns (e.g. more
than 10) or users with many ‘No Opinions’ [42,17,43,44]. To
our knowledge there has been no attempt to apply more
sophisticated methodologies to identifying suspect entries on
the basis of users’ answer patterns [an exception is [13]].

In this paper we investigated a number of classification
techniques that automatically identify inconsistent entries
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Table A.7 – Clustered dataset using Mahalanobis distance.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 6 711 303 6 639 375
Suspect 168 34 168 34

Greece
Valid 51 833 2186 51 731 2288
Suspect 1 392 136 968 560

England
Valid 106 631 4497 106 291 4837
Suspect 3 241 152 3 393 0
Table A.8 – Un-clustered dataset using Mahalanobis distance.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 6 689 325 6 695 319
Suspect 169 33 68 134

Greece
Valid 51 418 2601 51 426 2593
Suspect 1 279 249 713 815

England
Valid 106 185 4943 106 107 5021
Suspect 3 171 222 906 2487
Table A.9 – Clustered dataset using PCOut.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 5 793 1 221 5 811 1 203
Suspect 142 60 75 127

Greece
Valid 43 185 10 834 44 128 9 891
Suspect 1 066 462 1 324 204

England
Valid 87 924 23 204 89 492 21 636
Suspect 2 682 711 1 697 1 696
without the use of any paradata. We first drew on the
logic of psychometric approaches that are used to address
similar problems of suspect entries in exam or test scenarios
based on inconsistent answer patterns. We compared the
former with techniques drawn from data mining. Both
sets of approaches shared the characteristic that no prior
knowledge of what is a suspect entry is assumed. However,
given that we possessed the relevant paradata we were able
to validate the results of our suspect detection methods
against labeled datasets where the labels belonged to the
set Y = {‘Valid’, ‘Suspect’} and were assigned to each
entry based on known timer violation criteria. We first
applied the methods to simulated datasets and found that
performancewas surprisingly robust in terms of using answer
patterns to correctly identify truly rogue data that had
been simulated. Indeed, the best performing data mining
technique performed very similarly to the psychometric
approaches—in both cases virtually perfect classification
in terms of ROC curve analysis. Most importantly, the
data mining technique was able to accomplish this
without additional layers of analysis, such as sophisticated
preprocessing and the use of domain specific knowledge.

When we tested the performance of both approaches on
a dataset comprised of real ‘suspect’ entries rather than
randomly simulated ones, the results were poor. Indeed, an
analysis of the area under the ROC curve showed that both
psychometric and data mining classification was little better
than random chance. For the moment, therefore, our results
suggest that the proposed techniques can complement and
not replace existing methods since they identify a different
set of violations: that is, users that exhibit suspect behavior
in terms of their ideological profile that need not be
associated with timer response violations. Insofar as the data
mining techniques are concerned, and in the absence of
any benchmarks, forthcoming research will apply supervised
machine learning techniques on VAA generated datasets.
This will further extract insights on the performance of
machine learning techniques in the area of Likert-scale data
cleaning.

Appendix. Detailed results

Tables A.7–A.12 present the results acquired. They are
grouped by dataset type (i.e., clustered, and un-clustered)
and by the approach used i.e., Data Mining (Mahalanobis and
PCOut), and Psychometric. Each of these tables represent the



J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S 3 ( 2 0 1 6 ) 1 7 2 – 1 8 2 181
Table A.10 – Un-clustered dataset using PCOut.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 5 219 1 795 5 445 1 569
Suspect 123 79 0 202

Greece
Valid 40 797 13 222 42 036 11 983
Suspect 1 019 509 0 1 528

England
Valid 87 020 24 108 88 716 22 412
Suspect 2 681 712 0 3 393
Table A.11 – Psychometric based using Gnormed.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 6 134 880 6 274 33
Suspect 152 50 33 169

Greece
Valid 47 372 6 647 48 100 5 919
Suspect 1 172 356 510 1 018

England
Valid 97 506 13 622 99 695 11 433
Suspect 2 975 418 1 245 2 148
Table A.12 – Psychometric based using U3 fit.

Country Labeled as Original dataset Simulated dataset
Classified as

Valid Suspect Valid Suspect

Ireland
Valid 6 122 892 6 264 750
Suspect 149 53 39 163

Greece
Valid 47 307 6 712 48 112 5 907
Suspect 1 178 350 561 967

England
Valid 97 535 13 593 99 824 11 304
Suspect 2 982 411 1 132 2 261
confusion matrix generated by calculating the frequencies of
the labels assigned to each entry (as described in Section 3)
against the class assigned by the aforementioned techniques.
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