
Doctoral Dissertation

Bayesian Inference Techniques for Deep Learning

Charalampos Partaourides

Limassol, January 2018

CYPRUS UNIVERSITY OF TECHNOLOGY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING, COMPUTER

ENGINEERING AND INFORMATICS

Doctoral Dissertation

Bayesian Inference Techniques for Deep Learning

Charalampos Partaourides

Limassol, January 2018

i

Approval Form

Doctoral Dissertation

Bayesian Inference Techniques for Deep Learning

Presented by

Charalampos Partaourides

Supervisor: Dr. Sotirios Chatzis, Assistant Professor

Signature

Member of the committee: Dr. Elpida Keravnou-Papailiou, Professor

Signature

Member of the committee: Dr. Theodora Varvarigou, Professor

Signature

Cyprus University of Technology

Limassol, January 2018

iii

Copyrights

Copyright© 2018 Charalampos Partaourides

All rights reserved.

The approval of the dissertation by the Department of Electrical Engineering, Computer

Engineering and Informatics does not imply necessarily the approval by the Department of the

views of the writer.

v

I would like to thank

my supervisor Dr. Sotirios Chatzis without whom nothing would have been possible, my

friends and family that still don’t know what i do, and also the people that constitute the Cyprus

University of Technology; the teachers and the students, the academic and the administrative

staff. All have provided me with the constructive friction needed to cherish the PhD experience.

A few words ...

Obtaining a PhD is a daunting task. It is a treacherous journey that, more often that it should,

feels like it will never end. It may be bleak to reconcile that what is produced with so much

effort may be obsolete in 20 years time but that is not what the PhD has essentially offered.

An undergraduate degree’s ultimate goal is to provide you with a coherent thinking process in

order to evaluate and judge the things we all take for granted. In contrast, a PhD’s goal is to

provide you with the imagination tools in order to derive new things. These may be or not be

the future status quo.

As researchers that is the risk we take. Nobody knows what the future will bring and in

my opinion it is better not to completely know. A partially observable environment may be

surrounded with uncertainty but that uncertainty is an excellent motivator for exploration.

vii

ABSTRACT

Deep learning has achieved state of the art performance in various challenging machine

learning tasks pushing the Artificial Intelligence frontier into new heights. Tasks like object

recognition, speech perception, language understanding and robotics are improving year by

year. This is mainly due to the recent breakthroughs in Bayesian inference, the increased

volume of datasets and the increased computational power. These make it feasible to tractably

train these challenging hierarchical structured models that contain millions of parameters.

Deep Learning is an umbrella term which entails numerous deep architecture models that

are able to capture even the most complex dynamics of the environment. Typically, they are

trained under the maximum likelihood estimation paradigm. Unfortunately, in many real

world tasks the high dimensionality of the observations results in even the largest datasets to

being sparse. As such, there is an immense need for the training algorithm to compensate the

uncertainty introduced by the data sparsity, overcome the model’s overfitting tendencies and

in result generalize well.

The statistical method of Bayesian inference provides a mathematically coherent way of

dealing with data sparsity and overfitting. It essentially uses the Bayes theorem to accumulate

evidence-based knowledge. This is achieved by postulating probability distributions over the

parameters instead of trying to derive point estimates of them. Under the Bayesian view, we

impose a prior distribution that encapsulates our initial belief about the model’s dynamics

and we correct that belief as we are presented with more data; this consists in inferring the

posterior distribution. It is conspicuous that the choice of the distribution heavily controls the

expressiveness of the model.

In this thesis, we present innovative approaches to train deep networks by considering sparsity,

skewness and heavy tails on the form of the parameters distribution. Specifically, among our

contributions, we impose a sparsity inducing distribution over the network synaptic weights

to improve generalization. On a different vein, we consider the imposition of a skew normal

distribution over the latent variables to increase the deep networks capacity. In parallel, we

examine the efficacy of inferring the feature functions by devising a novel random sampling

rational combined by an optimizable sample weighting scheme. The models derived by the

aforementioned approaches are trained by means of approximate Bayesian inference scheme

to allow for scalability in large datasets. We exhibit the advantages of these methods over

existing approaches by conducting an extensive experimental evaluation using benchmark

ix

datasets.

Keywords: Deep Learning, Machine Learning, Bayesian Inference, Variational Bayes, Regu-

larization

x

TABLE OF CONTENTS

ABSTRACT . ix

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

LIST OF PUBLICATIONS . xvii

1 Introduction . 1
1.1 Deep Neural Networks . 5

1.2 Deep Learning . 9

1.3 Generative Models . 11

1.4 Deep Network Regularization . 12

2 Bayesian Inference . 15
2.1 Variational Bayes . 17

2.2 Sampling Methods . 19

2.3 Model Selection . 22

3 Deep Network Regularization via Bayesian Inference of Synaptic Connectivity 23
3.1 Introduction . 24

3.2 Theoretical Background . 25

3.2.1 DropConnect . 25

3.2.2 Black-Box Variational Inference . 27

3.3 Proposed Approach . 28

3.3.1 Training DNNs with DropConnect++ layers 29

xi

3.3.2 Feedforward computation in DNNs with DropConnect++ layers . . . 31

3.4 Experimental Evaluation . 32

3.4.1 Computational complexity . 35

3.4.2 Further investigation . 36

3.5 Conclusions . 37

4 Asymmetric Deep Generative Models . 39
4.1 Introduction . 40

4.2 Theoretical Foundation . 42

4.2.1 Variational Auto-Encoder . 42

4.2.2 The rMSN distribution . 43

4.2.3 Skip Deep Generative Models . 45

4.3 Proposed Approach . 48

4.4 Expiremental Evaluation . 51

4.4.1 Workflow recognition dataset . 52

4.4.2 Honeybee dance dataset . 53

4.4.3 Yearly song classifciation using audio features 54

4.4.4 Image classifcation benchmarks . 55

4.4.5 A note on computational complexity 56

4.5 Conclusions . 57

5 Deep Learning with t-Exponential Bayesian Kitchen Sinks 59
5.1 Introduction . 59

5.2 Methodological Background . 62

5.2.1 Weighted Sums of Random Kitchen Sinks 62

5.2.2 The Student’s-t Distribution . 63

5.2.3 The t-Divergence . 64

5.3 Proposed Approach . 65

5.3.1 Model Formulation . 65

5.3.2 Model Training . 66

5.3.3 Inference Algorithm . 70

5.4 Experimental Evaluation . 70

5.4.1 Comparative Results . 72

5.4.2 Further Investigation . 74

xii

5.4.3 Are t-Exponential Bayesian Kitchen Sinks More Potent Than Random

Kitchen Sinks? . 74

5.4.4 Computational Complexity . 75

5.5 Conclusions . 76

6 Future Endeavors . 77
6.1 Generative Adversarial Networks . 78

6.2 Neural Attention . 79

6.3 Deep Q-networks . 79

REFERENCES . 81

APPENDIX I . 97

xiii

LIST OF TABLES

3.1 Predictive accuracy (%) of the evaluated methods. 33

3.2 Computational complexity (sec) per iteration at training time (L = 1). 33

3.3 Variation of the predictive accuracy (%) of the MC-driven approach (Eq:3.21)

with the number of MC samples. 35

4.1 Activity recognition experiments: Test error (%) of the evaluated methods

(means and standard deviations over multiple repetitions). 54

4.2 Song classification experiments: Test error (%) of the evaluated methods

(means and standard deviations over multiple repetitions). 55

4.3 Image classification benchmarks: Test error (%) of the evaluated methods

(means and standard deviations over multiple repetitions). 56

5.1 Obtained performance for best model configuration (the lower the better) . . . 71

5.2 DtBKS performance when replacing t-Exponential Bayesian Kitchen Sinks

with Random Kitchen Sinks. 75

xiv

LIST OF FIGURES

1.1 Hierarchical representations form low to high level abstractions 3

1.2 A simple neuron . 6

1.3 Single layer neural network . 6

1.4 Activation functions . 8

3.1 Accuracy convergence . 36

3.2 Inferred posterior probabilities, π̃ . 37

5.1 Univariate Student’s-t distribution t(yt ; µ,Σ,ν), with µ , Σ fixed, for various

values of ν [176]. 64

5.2 Graphical illustration of the configuration of one DtBKS model layer. 67

5.3 DtBKS performance fluctuation with the number of layers, L, and the output

size of each hidden layer, η (as a fraction of input dimensionality, δ) 73

xv

LIST OF ABBREVIATIONS

AsyDGM: Asymmetric Deep Generative Models

AI: Artificial Intelligence

AVI: Amortized Variational Inference

BBVI: Black Box Variational Inference

BP: BackPropagation

cdf: cumulative distribution function

DBMs: Deep Boltzmann Machines

DBNs: Deep Belief Networks

DGMs: Deep Generative Models

DGP: Deep Gaussian Process

DNNs: Deep Neural Networks

DOP: Degrees Of Freedom

DtBKS: Deep t-exponential Bayesian Kitchen Sinks

ELBO: Evidence Lower Bound

EM: Expectation Maximization

FA: Factor Analysis

GD: Gradient Descent

i.i.d.: independent and identically distributed

KL: Kullback Leibler (divergence)

MC: Monte Carlo

ML: Maximum Likelihood

pdf: probability density function

RBF: Radial Basis Function

RBMs: Restricted Boltzmann Machines

ReLU: Rectified Linear Unit

RKS: Random Kitchen Sinks

rMSN: restricted Multivariate Skew-Normal (distribution)

SBG: Shannon Boltzmann Gibbs

SDGM: Skip Deep Generative Model

SGD: Stochastic Gradient Descent

VAEs: Variational AutoEncoders

xvi

LIST OF PUBLICATIONS

Harris Partaourides and Sotirios P Chatzis. “Deep Network Regularization via Bayesian

Inference of Synaptic Connectivity”. In: Pacific-Asia Conference on Knowledge Discovery

and Data Mining. Springer. 2017, pp. 30–41.

Harris Partaourides and Sotirios P Chatzis. “Asymmetric deep generative models”. In:

Neurocomputing 241 (2017), pp. 90–96.

Harris Partaourides and Sotirios P. Chatzis. “Deep Learning with t-Exponential Bayesian

Kitchen Sinks”. In:Expert Systems with Applications. Vol. 98. May 2018.

Charalambos Chrysostomou, Harris Partaourides, and Huseyin Seker. “Prediction of Influenza

A virus infections in humans using an Artificial Neural Network learning approach”. In:

Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International

Conference of the IEEE. IEEE. 2017, pp. 1186–1189.

xvii

Chapter 1

Introduction

We are experiencing a period in human history where information is in abundance. The digital

revolution has led to a monumental increase in information access, transmission, storage and

computation. To provide a sense of the sheer volume of digital information, IBM estimated in

2013 to be 2.5 exabytes per day. Trying to model, analyze and extract information manually

from this volume is an impossible task; thus we resort to systems and algorithms to distill

knowledge from the raw data.

The first systems designed for modelling data were rule based systems, where an input was

passed through a manual designed program to produce the desired output. These systems

are exceptional at tasks where the problem can be efficiently described in rigid mathematical

rules implemented under the ”if-then-else” paradigm. Unfortunately, as tasks become more

complicated, the model dynamics become ambiguous making it infeasible to find rules and

axioms analytically. Therefore, we resort to data driven approaches that can derive the

dynamics in an automate matter.

Machine learning was introduced to tackle this type of problems [1]. Similarly, as humans learn

from experience, machine learning aims to mimic that process. It uses models with adaptive

parameters and learns to infer their optimal values based on observed data and relevant

performance metrics. We typically require the algorithm to learn the data structure and

regularities, encode them inside the parameters of the algorithmically developed mathematical

model and finally use them to generate predictive outcomes of high accuracy and quality.

Generalization capacity which is the quality of generating good outcomes on unseen data, is

the utmost goal of any machine learning model.

To ensure generalization we must capture the data dynamics. In this context, extracting

1

effective representations that are distinctive and characteristic information of the raw data

is significant; this is commonly known as feature extraction. The first machine learning

algorithms relied on the manual extraction of features e.g single-layer perceptron [2], logistic

regression [3], naive Bayes [4], kernel regression [5], support vector machines [6, 7, 8].

Selecting the correct distinctive attributes from the raw data to produce the features is a

daunting process, requiring expert knowledge of the task at hand [9].

Feature learning (representation learning) [10] alleviates the need of ad hoc manual extraction

by replacing it with an automated process. We effectively introduce a trainable processing

layer between the model’s input and output that process the observations and produces the

features. This is beneficial not only for extracting special knowledge from the data but also for

deriving the latent (hidden) dynamics of the task. The aforementioned dynamics are necessary

for an efficient and expressive model. In effect, the output of the latent layer produces an

abstract representation of the input.

Models with one layer of abstraction are considered shallow and were initially preferred

[11]. The prominent choice for shallow models is the single layer neural network [12] which

in theory under the universal approximation theorem [13, 14] can represent any desirable

function given the appropriate number of units at the hidden layer (model’s width). In practice

however, as the task’s complexity increases so does the required model width; this renders the

optimization of the resulting increased number of parameters inefficient.

The theoretical and practical limitations of shallow techniques combined with the biological

findings on how the human brain learns feature extraction, led to an important conclusion:

Building equivalent systems requires models with deep architectures that involve several

hidden layers of nonlinear processing structured hierarchically. For instance, the visual cortex

solves the object recognition problem with a complex multilayer processing of the visual

information in order to capture the spatio-temporal dynamics [15, 16, 17].

Deep Networks [18] is an umbrella term which entails numerous deep architecture models. As

such, they comprise a huge number of trainable parameters integrated in many layers of neural

networks with nonlinear dependence. These probabilistic directed models are able to capture

even the most complex latent dynamics that exist beneath the observations. In each subsequent

layer the model learns to extract a more abstract representation of the observations; thus learns

features that range from coarse to task specific. For clarity in figure 1.1, we present an example

of the learned hierarchical representation of a raw image in a trained deep convolutional

network (The figure was taken from [19]).

2

Figure 1.1: Hierarchical representations form low to high level abstractions

The automatic and abstract feature extraction process that exists in deep networks is typically

required to have the transferability property. This effectively means that we want to reuse

the relevant layers in similar tasks thus minimizing the model training procedure [20]. This

property is extremely helpful in tasks where the labeled data are limited.

In general, hierarchical models do not have a unique estimator since they give rise to non

convex objective functions of the training algorithm. As a result, deep networks have no

unique solution thus, the same model trained under different initializations will converge to

different estimators of each parameters. In addition, the non convexity of the model exhibits

multiple local minima in the objective function, making maximum likelihood estimation [21]

difficult. Furthermore, in many real world tasks the high dimensionality of the observations

results even in the largest datasets to being sparse. As such, there is an immense need for the

training algorithm to compensate the uncertainty introduced by the data sparsity, overcome

the model’s overfitting tendencies [22, 23] and in result generalize well.

The statistical method of Bayesian inference provides a mathematically coherent way of deal-

ing with data sparsity and overfitting [24]. It essentially uses the Bayes theorem to accumulate

evidence-based knowledge. This is achieved by postulating probability distributions over the

parameters instead of trying to derive point estimates of them. Under the Bayesian view, we

impose a prior distribution that encapsulates our initial belief about the model’s dynamics

and we correct that belief as we are presented with more data; this consists in inferring the

posterior distribution. It is conspicuous that the choice of the distribution heavily controls the

expressiveness of the model.

In the last years, deep learning has achieved state of the art performance in various challenging

3

machine learning tasks pushing the Artificial Intelligence frontier into new heights. Tasks

like object recognition [25, 26, 27, 28, 29], speech perception [30, 31, 32, 33], language

understanding [34, 35] and robotics [36, 37, 38] are improving year by year. In addition, they

can make efficient use of the large supply of unlabeled sensory data [39, 40, 41, 42]. This

is mainly due to the recent breakthroughs in Bayesian inference, the increased volume of

datasets and the increased computational power. These make it feasible to tractably train these

challenging hierarchical structured models that contain millions of parameters.

In addition, they have been assisted by software advancements reducing the development

time for deep architectures. Software frameworks such as Tensorflow [43] and Caffe [44].

Including toolkits and wrappers on top of them such as Pylearn2 [45], Lasagne [46] and Keras

[47]. The software packages and libraries allow for leveraging fast and extremely scalable

parallelizations in modern GPU devices, in way transparent to the programming; thus making

computationally feasible the training of even more complex mathematical models [48, 49, 50].

In this thesis, we present innovative deep learning approaches which tackle sparsity, skewness

and heavy tails in the observed data and the underlying latent dynamics. One of our major

contributions, consists in introducing a novel method for deep network regularization. Specifi-

cally, for the first time in the literature, we impose a sparsity inducing distribution over the

network synaptic weights [51] for inferring a posterior distribution over the synaptic connec-

tivity. This approach generalizes DropConnect [52], improves generalization capacity and is

efficiently trained under the Bayesian inference paradigm by means of black-box variational

inference algorithm [53]. On a different vein, we address the prevalence of asymmetric latent

patterns in deep autoencoders by considering the imposition of a skew normal distribution

over the latent variables [54]. This approach increases the deep networks capacity and is

efficiently trained with the amortized variational inference algorithm [55]. In parallel, we

examine the efficacy of inferring the feature functions of deep networks by devising a novel

random sampling rational combined by an optimizable sample weighting scheme [56]; this

approach was influenced by the Random Kitchen sinks [57] rationale. The models derived

by the aforementioned approaches are trained by means of approximate Bayesian inference

scheme to allow for scalability in large datasets. We exhibit the advantages of these methods

over existing approaches by conducting an extensive experimental evaluation using benchmark

datasets.

The remainder of the thesis is organized as follows: In the rest of Chapter 1, we present

deep architectures in a more thorough context. In Chapter 2, we present the mathematical

background of the thesis notably Bayesian inference fundamentals and Variational Bayes.

4

In Chapter 3, we present our innovative approach of regularization with sparsity inducing

distributions. In Chapter 4, we expand the capacity of Deep Generative Models with our

innovative approach that can capture asymmetric latent dynamics. In Chapter 5, we will

present our alternative way of implementing the model’s nonlinearities and extend it to capture

latent dynamics with heavy tails. Finally in Chapter 6, we will provide the conclusions of the

thesis accompanied with future endeavors and open research area topics.

1.1 Deep Neural Networks

Deep Neural Networks (DNNs) is an umbrella term which entails numerous deep architecture

models, a variety of machine learning algorithms and even a set of divergent paradigms. They

are primary designed to efficiently solve Artificial Intelligence (AI) tasks that entail learning

from high dimensionality observations. In their simplest form, they consist of hierarchical

neural networks structure with the ultimate goal to infer the function that accurately describes

the data. In this context, discriminative models aim to learn the dependence form between the

observed variables X and predictive variables Y .

The mathematical formulation of the discriminative model is:

Y = f (X ;θθθ) (1.1)

where f () the function that describes the task and θθθ the trainable parameters. In the case of a

single layer neural network (1.1) becomes:

Y = f (X ;θθθ ,www) = φ(X ;θθθ)T www (1.2)

where φ(.) a non linear transformation, θθθ the parameters of φ(.) and www the parameters that

map the features to output. In case we are dealing with a multilayer neural network φ(.)

becomes to:

φ(X) = φ
N(..(φ 2(φ 1(X)))) (1.3)

where N the number of hidden layers i.e the depth of the model. In (1.3) we omitted the

parameters θ that exist in each layer for clarity. A graphical representation of a simple neuron

and a single layer neural network are shown at figure 1.2 and figure 1.3 respectively.

5

Figure 1.2: A simple neuron

Figure 1.3: Single layer neural network

6

Constructing a simple DNN entails numerous configuration choices. The first we consider

is the number of hidden layers. Adding layers into the architecture will result to a deeper

model with an increased capacity; thus able to capture even more complex latent dynamics.

Unfortunately, without a proper training algorithm and regularization tools, the model will fail

to generalize. This is due to the increased number of trainable parameters which subsequently

increases the model’s overfitting tendencies. In addition, as we increase the number of layers

we start to experience the vanishing/exploding gradient problem, where the gradients that

are used to optimize the adaptive parameters get susceptible to numerical instability errors

(overflow/underflow).

The next configuration choice one has to consider is the number of units that will comprise the

networks layers. This choice in effect defines the width of the architecture. Considering that

we are working with high dimensional data, a common approach is to gradually reduce the

units in each subsequent layer, from the dimensionality of the input to the dimensionality of

the output. This is reasonable if we recall that the features on each layer constitute an abstract

representation of the layers input; thus the output dimensionality should be lower than the

input dimensionality in each layer.

Another essential component of DNNs is the non linear feature functions. Constructing a deep

network without feature functions (activation functions) is impossible, as will collapse the deep

architecture to an equivalent shallow one. Typical choices are logistic sigmoid, hyperbolic

tangent and rectified linear unit (ReLU) [58, 59]. The logistic sigmoid and hyperbolic tangent

activation functions are closely related; both belong to the sigmoid family. A disadvantage of

the sigmoid activation function is that it must be kept small due to their tendency to saturate

with large positive or negative values. To alleviate this problem, practitioners have derived

piecewise linear units like the popular ReLU [60] which are now the standard choice in

deep learning research. In addition, ReLU is a viable option for the universal approximation

theorem to hold [61] and even has task specific generalizations such as leaky ReLU [62],

parametric ReLU [63] and Maxout units [64]. At figure 1.4 we illustrate some of the above

functions. In this thesis, a novel construction choice with arbitrary nonlinearities will be

presented in Chapter 5.

Another architecture choice is the connectivity between layers. The simplest choice is a

dense layer where the units in each layer are fully connected. Alternative popular choices

include but are not limited to convolutional layers for capturing spatial dependencies [25, 28,

65], recurrent neural networks for capturing temporal dependencies [66, 67, 68] and skip

connections from layer to layer to facilitate gradient flow [69, 70].

7

Figure 1.4: Activation functions

Finally, last but not least we must define the model output. This heavily depends on the task

we are aiming to solve. Typically, when we are dealing with regression problems we resort to

linear output layers:

y =W T x+b (1.4)

where W the weights and b the bias. In the case of binary classification we use the sigmoid

function:

y = σ(W T x+b) (1.5)

where σ() the sigmoid function. In the case of classification we use the softmax function:

y j =
eW T

j x

∑
K
k=1 eW T

k x
(1.6)

where the K the number of classes and j the specific class.

These choices conclude the model architecture and in effect the set of configuration choices.

In addition, they give rise to the volume of trainable parameters and the associated objective

function. We typically require the model to be large enough to be able to capture the hidden

dependencies in the data. Once we have defined these architecture choices, we must estimate

all the trainable parameters of the model. This is achieved, by optimizing some performance

criterion with the use of the available training data. In the next section, we will present the

backbone of Deep Learning.

8

1.2 Deep Learning

The trainable parameters of deep networks do not yield a unique estimator; this is due to

the non convex nature of the employed objective functions. Indeed, training is performed

by means of iterative optimization algorithms with proven convergence to a local optimum

[71, 72, 73, 74]. One of the most popular choices to this end is gradient descent (GD) and its

variations. GD is a first-order iterative optimization algorithm, for minimizing the objective

function by means of the gradient of the objective function with respect to the parameters.

We have:

θ = θ −η∇θ J(θ) (1.7)

where θ the parameters, J() the objective function and η the learning rate.

GD uses the gradient of all training examples in the dataset (batch) at each step to update

the sought parameters. This is computationally demanding when we are dealing with huge

datasets; an alternative that address this limitation is to update the parameters on each training

example. The latter is known as stochastic gradient descent (SGD) [75]. A typical problem of

SGD is that it produces high variance updates; hence, we typically resort to mini-batch GD

where the parameters are updated by using a few tens of training examples. In deep networks,

the gradients of the objective function with respect to the parameters are computed with the

help of the backpropagation (BP) method [76]. GD does not guarantee to find the global

optimum; this mainly due the saddle points of the objective function that make the optimizer

susceptible to get stuck in suboptimal local minima.

A method that address this limitation is the proper initialization of the GD algorithm. A

typical choice is the initialization with small random values. A prominent example is Glorot

uniform [77] that samples from a uniform distribution where the sampling range depends on

the number of input and output units of the layer. To facilitate convergence rate, a plethora

of alternative schemes have been developed; these suggest different ways of selecting the

GD’s learning rate [78]. The most noteworthy examples are momentum [79] and Nesterov

accelerated gradient [80] that use the gradient of the previous steps to accelerate the descent.

Followed by Adagrad [81], Adadelta [82], RMSprop [83] and Adam [84] that use different

learning rate for each parameter in addition to the gradient of the previous step. Furthermore,

the latter techniques are less dependent to proper parameters initializations [85] due to their

adaptive learning rates. In a different vein, it has been observed that adding random small

9

values on the gradient such as Gaussian noise helps the model’s generalization capacity [86].

Achieving a strong generalization capacity is the ultimate goal in machine learning. This

means that the trained model achieves accurate and comparable performance metrics in an

independent dataset. To evaluate the generalization performance of a trained network, we

typically split the complete dataset in training, testing and validation datasets. To alleviate

the burden of a valid independent and identically distributed (i.i.d) split we resort to cross

validation techniques like k-fold or Monte Carlo cross validation [87] where we train the

network multiple times in different splits and compute the average performance. The training

set is used for training the network parameters. The validation set is used for the selection

of the hyperparameters of the model such as number of layers, units in each layer and initial

learning rates. The test set is used for assessing the generalization performance and needs to

be excluded from any parameter (or hyperparameter) value estimation.

A measure of performance in regression is:

MSE =
1
N

N

∑
n=1
||ŷ(i)− y(i)||

2
(1.8)

where y the target value and ŷ the model’s output. This is a common but rather simplistic

metric since it assumes spherical distributed data. To relax this assumption one needs to define

a predictive distribution that renders the deterministic model to a stochastic one. For instance,

we may replace the linear output of Eq.(1.4) with:

p(y|x) = N(y|xTW,σ2I) (1.9)

where we postulate a Gaussian predictive density conditional on the input. Thus the model’s

output is the mean of a conditional multivariate Gaussian distribution with the variance σ2

fixed to some constant. Under the maximum likelihood perspective, we derive the adaptive

parameters values by maximizing the likelihood of observations given the parameters. The

mathematical formulation of the maximum likelihood is:

θML = argθ max[logP(X ;θ)] (1.10)

where log is the natural logarithm; a monotonic transformation used to simplify the products to

summations without affecting the parameter estimation process. The mathematical formulation

of the conditional maximum log likelihood becomes:

10

θML = argθ max[logP(Y |X ;θ)]

= argθ max
N

∑
n=1

logP(y(i)|x(i);θ)
(1.11)

where the summation was introduced by considering i.i.d datapoints. The summation can be

further analyzed as:

N

∑
i=1

logP(y(i)|x(i);θ) =−N logσ − N
2

log(2π)−
N

∑
i=1

||ŷ(i)− y(i)||2

2σ2 (1.12)

where N the number of examples. We observe that maximizing the log-likelihood with respect

to the parameters yields the same result as does minimizing the mean square error when σ = 1.

Training DNNs under the maximum likelihood paradigm is effective but not sufficient. One

of the reasons for searching better techniques for training DNNs is data sparsity, where we

may have an abundance of data but those are located in a small part of the observable space.

In addition, some machine learning tasks can only provide a limited amount of training data.

This biases the model training procedure into capturing a suboptimal distribution of the data,

hence failing to generalize well. To address this problem, we need to introduce statistical

assumptions inside the hidden layers. There are three major directions where we can postulate

statistical assumptions with probability density functions. The first is the layers outputs, the

second is the trainable parameters and the last is the feature functions. These directions will

be examined in the following Chapters.

1.3 Generative Models

In the previous sections, we talked about models that try to capture the discriminative depen-

dency between the independent variable x and a predictable variable y. For instance, x could

be a collection of animal images and y their correct class or x could be a recorded speech

signal of phonemes and y the pronunciated phoneme. These are referred to as discriminative

models and are typically trained with supervised learning that requires both variables x and

y i.e. labeled training data. A different type of models with great importance are generative

models [88, 89, 90].

Generative models goal is to model the phenomenon that generates the observations, thus

capturing the phenomenon’s hidden structure. Generative models have multiple practical

11

uses such as generating images [91] and modeling sequential data (e.g. human motion [92,

93]). In this context, the training algorithm attempts to learn the probability distribution

by solely using the raw data. This is very convenient characteristic due to the unlimited

supply of unlabeled data collected by a plethora of applications of the modern society. As we

have already mentioned, deep networks entail a procedure of learning to extract hierarchical

representations (features) of the input. Therefore, we can postulate a generative model which

is parameterized via deep networks that will be trained to extract informative features with the

use of unlabeled data.

In addition, semi-supervised learning [94] disentangles the representation learning and the

classifier. Therefore, we can use a large dataset of observations to train a generative model

and a small labeled dataset to train the simple classifier. This type of learning has shown great

performance results [95, 96, 97] and alleviates the time consuming and expensive issue of an

expert having to label huge datasets.

Generative models have a long history in machine learning, with the most promising approach

being Deep Generative Models (DGMs) [98]. This fairly recent development started when

Hinton et al. in 2006 introduced Deep Belief Networks (DBNs) [99] which were primarily

based on Restricted Boltzmann Machines (RBMs) [100]. DBNs comprise of multiple layers

of hidden variables trained efficiently with a greedy layer-by-layer learning algorithm. The

algorithm is moderately fast and scales well to large sets of unlabeled data. DBNs were

followed by Deep Boltzmann Machines (DBMs) [101] which is an undirected graphical model

also based on RBM. Howerver, the most recent advance in the field with impressive results

are the Variational Autoencoders (VAEs). A VAE model learns to extract a salient, lower

representation of the input that is more useful and its training criterion reflects how well we

can reconstruct the data.

1.4 Deep Network Regularization

As we have mentioned, the overfitting tendency of deep models brings to the fore the immerse

need of regularization. Dealing with overfitting is the key ingredient in the effort of enabling

good generalization capacity, and obtaining a model of comparable performance in training

and test data. Overfitting rises from the model’s incapability to account for uncertainty which

is due to the epistemic nature of the available training data. In addition, not dealing with

overfitting will lead to a model biased on the training set.

12

A simple approach to prevent overfitting would be to gradually increase the model parameters

till we start to observe overfitting. This technique may be plausible in shallow networks but on

deep networks is not a valid solution. This mainly due to the dependencies between layers, the

activation functions and the optimizers that make impossible to derive the optimal number

of parameters. In addition, this procedure will restrict the model’s capacity in capturing

dependencies.

Another approach is to increase the available training set. To augment the dataset requires

human labor which is costly, lengthy and not always a possible procedure. Thus, a similar

approach will be to generate synthetic data. The goal when creating synthetic data is to create

variations that are as close as possible to the original data. This is refer to as data augmentation

scheme and its process varies from problem to problem. For instance, the data augmentation

schemes for tasks with image datasets consist in shifting the image, adding noise, or changing

the background.

An alternative approach, is to halt the training process when starting to observe overfitting on

a validation set. This is known as early stopping and even though the process minimizes the

overfitting it often results in under trained networks. In addition, it does not address any of the

reasons for overfitting and misuses precious data.

A more coherent way of dealing with the issue is weight penalty. It was constructed as a tool to

force the network to favor simple explanations of the data, to more complex ones. It’s inspired

by the Occam’s razor principle that states that the simplest explanation is usually the best.

This is achieved by keeping the parameters value as small as possible by introducing a penalty

term on the objective function that promotes small values for the parameters. These were the

earliest form of regularizers. Common weight penalty techniques are: a) L1 regularization,

that penalizes the absolute value of the parameter weights; thus resorts to sparse weights. b)

L2 regularization, that penalizes the square values of the parameter weights. Unfortunately,

weight penalty in deep networks exhibits a small impact on overfitting thus, we must resort to

more advanced methods.

Dropout [102] is one of the most popular regularization techniques for deep networks. In

essence, it consists in randomly dropping different units of the network on each iteration

of the training algorithm. This way, only the parameters related to a subset of the network

units are trained on each iteration; this effectively limits overfitting and increases the model’s

performance. It can be thought of as training numerous small dependent networks and also

ensuring that all network parameters are effectively trained. In addition, by using the dropout

13

regularizer we also limit the co-adaptation of the parameters during the training procedure.

A typical network output is:

r = a(W ·u) (1.13)

where r is the layer output vector, a(·) is the adopted activation function, W is the matrix of

synaptic weights and u is the layer input vector. When dropout is applied, the network output

units (1.13) become:

r = m◦a(W ·u) (1.14)

where ◦ is the element-wise product and m is a vector of binary variables (indicators) encoding

the unit selection. They are drawn independently from m j ∼ Bernoulli(p) where j the unit

of the layer’s output and p the probability of keeping the unit. Hence, Dropout effectively

introduces dynamic sparsity within the model, specifically on the output vectors of the layers.

Training of a Dropout layer begins by selecting an example u, and drawing a mask vector m

from a Bernoulli(p) distribution to mask out elements of the Dropout layer. The parameters

throughout the model can be updated via GD variants as usual. During testing, we do not

draw samples of the Bernoulli distribution but scale the weights with the drop probability p.

Furthermore, a generalization of Dropout, DropConnect [52], consists in dropping weights

instead of units and will presented in detail in Chapter 3.

Finally, we would like to underline that training DNNs without considering overfitting will

result to suboptimal performance. To alleviate this burden machine learning scientists have

developed various techniques that have been consistently shown to be linked to Bayesian

inference [103]. This insight have ignited an interest in developing regularizers that are

more mathematically coherent [104, 105, 106]. To be precise, L1 regularization imposes a

Laplace prior [107], L2 regularization a Gaussian prior [108] and the popular choice for DNNs,

Dropout, enjoys links with Gaussian process [109]. In the next Chapter, we will present the

mathematical background of Bayesian inference that will be used through out the thesis.

14

Chapter 2

Bayesian Inference

Statistical inference is a collection of algorithms and paradigms employed for estimating the

statistical properties and the underlying probability distribution of the observed data. In this

context, the observed data is assumed to be a subset of the observable space and constitutes a

population from which we can infer salient characteristics. Thus, the hypothesis is that the

characteristics of the entire population can be estimated from the available observations.

Bayesian inference is a paradigm of statistical inference under which we update a full proba-

bilistic model as more data becomes available. Bayesian inference [24] has recently risen in

popularity due to its successful use in deep networks among other machine learning models.

It has overshadowed the frequentist inference paradigm whereby the maximum likelihood

estimation is the prominent example. The key difference of the two paradigms lies in the

nature of the sought parameters estimates. On the one hand, the frequentist approach treats

them as fixed values that we seek to estimate i.e. point estimates. On the other hand, Bayesian

inference treats them as random values, postulates a prior hypothesis (a probability distribution

over them) and seeks to refine the assumption based on data; that is, obtain an appropriate

posterior distribution over them.

Specifically, under the Bayesian perspective, we initially impose a fundamental assumption

about the parameters distribution with the use of a prior distribution. This is essentially based

on our assumption about the underlying data dynamics or some kind of expert knowledge.

Then, we correct that belief as we are presented with more information by inferring the

sought posterior distribution. From a different perspective, we can claim that the Bayesian

paradigm uses the available data to update our initial belief of our distribution, in contrast

to the frequentist paradigm that determines some sufficient statistics which characterize the

15

sought parameters. Thus, Bayesian inference does not yield point estimates, instead it yields

a full (posterior) probability distribution which encodes different perspectives of the model

parameterization accompanied with the corresponding probability of relevance. Hence, can

account for the epistemic uncertainty of the available observable data; that is, the uncertainty

of the choice of model parameters and structure that best explain the data.

Consider a set of observations x, and the unknown set of parameters θ . Under the Bayes

theorem the sought posterior distribution is:

p(θ |x) = p(x|θ)p(θ)
p(x)

(2.1)

where p(θ |x) the posterior distribution; this is the estimated probability of the parameters given

the observations. In addition, p(x|θ) is the likelihood function which represents the probability

of the observations given the parameters. Furthermore, p(θ) is the prior distribution that

encapsulates our initial belief about the parameters distribution. Finally, p(x) is the model

evidence, also known as the marginal likelihood that can be expanded as:

p(x) =
∫

p(x|θ)p(θ)dθ (2.2)

Typically, in order to allow for modeling complex data dynamics we need to introduce

additional data dependencies on some unobserved latent variable z. Under such an assumption

the marginal likelihood is expressed conditional on the latent variable z. Furthermore, we need

to impose a prior distribution over the latent variable, p(z) and seek to derive p(z|x). This

renders the posterior distribution to:

p(z,θ |x) = p(x|z,θ)p(z,θ)
p(x)

=
p(x|z,θ)p(z)p(θ)

p(x)
(2.3)

While for the marginal likelihood, we have:

p(x) =
∫

p(x,z,θ)dzdθ =
∫

p(x|z,θ)p(z)p(θ)dzdθ (2.4)

A typical issue with Bayesian inference is an intractable marginal likelihood. This issue

rises even in cases of moderately complicated models. In essence, for the case of continuous

variables, the required integrations may not have closed-form analytical solutions. While

for discrete variables, the marginalizations which involve summing over all possible config-

urations are prohibitively demanding. In these cases, we resort to approximations. There

16

are primarily two types of approximations; stochastic and deterministic. Stochastic approx-

imations use sampling methods to compute the intractable integrals and are proven to be

cable of obtaining satisfactory approximations under mild conditions. In practice however,

they are computationally demanding which limits their use to small scale problems. On the

other hand, deterministic approximations e.g. Taylor expansions, use simplifying assumptions

to ameliorate the intractabilities; this way we trade accuracy for linear computational time.

Variational Bayes is the most popular approximate inference technique for deep networks.

2.1 Variational Bayes

Variational Bayes approximates the intractable posterior distribution with a simpler family

of distributions that are analytically tractable; then, seek the distribution that minimizes a

similarity measure. This consists in constructing a lower bound and maximizing it, instead of

maximizing the marginal likelihood which is intractable. In essence, this renders the posterior

estimation task, an optimization one.

Consider x the observed variables, z the unobserved variables and θ the parameters. We can

rewrite the log marginal likelihood with the use of two variational distributions. We have:

log p(x) = log
∫∫ q(z)q(θ)

q(z)q(θ)
p(x,z,θ)dzdθ

= log
∫∫ q(z)q(θ)

q(z)q(θ)
p(x|z,θ)p(z)p(θ)dzdθ

(2.5)

where q(z) and q(θ) are the two new probability distributions that we will use to approximate

the true distributions p(z|x) and p(θ |x) respectively. Note that at this point, we have considered

that the posterior distribution (2.3) factorizes over z and θ . This is called the mean field

approximation, and it is widely used in the context of variational Bayesian inference in order

to simplify the mathematical equations. On this basis, and making use of Jensen’s inequality,

specifically logE[x]> E[logx] we have:

17

log p(x)>
∫∫

q(z)q(θ) log
p(x|z,θ)p(z)p(θ)

q(z)q(θ)
dzdθ

=
∫∫

q(z)q(θ) log p(x|z,θ)dzdθ

+
∫∫

q(z)q(θ) log
p(z)
q(z)

dzdθ

+
∫∫

q(z)q(θ) log
p(θ)
q(θ)

dzdθ

= Eq(z)q(θ)[log p(x|z,θ)]

+
∫

q(z) log
p(z)
q(z)

dz+
∫

q(θ) log
p(θ)
q(θ)

dθ

= Eq(z)q(θ)[log p(x|z,θ)]−DKL[q(z) ‖ p(z)]−DKL[q(θ) ‖ p(θ)]

= L (q)

(2.6)

where L (q) the evidence lower bound (ELBO) that we seek to maximize. This bound is often

referred to as the free energy of the model. Then, the marginal likelihood can be rewritten as:

log p(x) = L (q)+DKL[q(z) ‖ p(z)]+DKL[q(θ) ‖ p(θ)] (2.7)

where DKL the Kullback-Leibler divergence between two distributions. The divergence is

always positive and equals to zero if and only if the two distributions match. In essence,

minimizing the divergence maximizes the lower bound. Thus the goal is now finding a tighter

bound to the real distribution that is scalable to larger applications.

In case the postulated model is conjugate, this maximization can be performed by means

of simple moment matching. However, the need of imposing conjugate priors limits the

expressiveness of the model and its ability to capture complex distributions that often govern

real world scenarios.

On the other hand, non-conjugate models can be treated under the variational inference

paradigm by means of deriving a further lower bound to the ELBO by means of using

ad hoc approximation as suggested in [110, 111, 112]. Model treated liked this include

Bayesian logistic regression [113], Bayesian generalized linear models, discrete choice models

[114], Bayesian item response models [115] and non-conjugate topic models [116]. In

addition, Wang and Blei [117] developed two extensions to Mean-Field Variational Inference

that can be applied to a wider range of non-conjugate models, namely Laplace Variational

Inference and Delta method variational inference. The former makes appropriate use of

18

Laplace approximations which is a second order Taylor expansion around the mode of the

sought distribution, while the later a first order Taylor expansion.

The above solutions require model specific analysis that demand expert mathematical knowl-

edge. Thus, the capability of automating the procedure of variational inference is of utmost

importance. Black-Box Variational Inference [53] and Amortized Variational Inference [55]

are efficient training algorithms aimed at that direction. They use differentiable unbiased

estimators with the help of computationally inexpensive sampling methods. The latter two

inference procedures will be explained and used in the following chapters of this thesis in

order to efficiently train our innovative models.

2.2 Sampling Methods

Sampling methods are very important tools in machine learning. They are used in cases where

we want to draw samples from a distribution, approximate an intractable integral, an expensive

summation or a mathematical expectation. Monte Carlo (MC) sampling uses random samples

and its allure is due to the law of large numbers. This law dictates that as we continue to

sample from the probability distribution the average will converge to the theoretical mean

(expected value). In this context, the goal of sampling is to obtain satisfactory approximations

with as a limited number of samples as possible.

In this section, we will present common sampling methods used in deep networks. Recall that

a common issue of deep networks is that they have intractable exact inference. Specifically,

the expectation of the function f (z) with respect to the posterior distribution p(z|x), cannot be

computed analytically due to its complexity. Consider a simple case of MC sampling where

we require the evaluation of the following expectation:

E[f] =
∫

p(z) f (z) (2.8)

To compute the expectation we draw independent samples from p(z) and compute the empirical

average. Thus, we have:

E[f] = lim
n→∞

1
n

n

∑
i=1

f (z(i)) (2.9)

The above estimator is unbiased with a bounded variance that decreases as we increase the

19

samples. The problem however, lies in drawing samples that make significant contributions to

the sum. In addition, the mass of probability distributions of interest often lie in small regions

of z space, thus uniform sampling will under estimate the expectation. We ideally want to

draw samples that fall in regions where p(z) f (z) is large.

A common characteristic of deep probabilistic models is that it is impractical to draw in-

dependent and significant samples from the distribution p(x) but, we can easily evaluate

the distribution for any value of z. Influenced by this, rejection sampling uses a proposal

distribution q(z) that we can easily draw samples from. In addition, the samples are enlarged

with a constant k so that are a better fit to the sought distribution, kq(z) ≥ p(z). To apply

rejection sampling, we first draw sample z0 from the proposal distribution. Then we draw

a sample u0 from the uniform distribution of range [0,kq(z0)] which we compare with the

evaluation of the original distribution with the sample z0. If u0 > p(z0) we reject the z0 sample,

otherwise we retain it.

In essence, rejection sampling uses an envelope function to decide where to accept or reject

the samples. The probability of rejected samples depends on the area between the desired

distribution and the comparison function. Choosing an envelope function that minimizes the

rejection rate is difficult under the rejection sampling scheme. Adaptive rejection sampling

uses tangent lines to construct the envelope function. Specifically, when a sample is rejected a

new tangent line is introduced that refines the envelope function. Adaptive rejection sampling

is used on concave distributions, while a variant named adaptive rejection Metropolis sampling

can be used for a more broad range of distributions.

A major problem with the above methods is that they are suited for low dimensional z. As

the dimensionality increases the acceptance rate of samples diminishes leading to expensive

sampling loop per datapoint. Importance sampling uses a different approach; it evaluates the

expectation without drawing samples from the distribution p(z). It is based on the fact that we

can rewrite equation (2.8) with the assistance of a proposal distribution q(z), as:

E[f] =
∫ q(z)

q(z)
p(z) f (z) (2.10)

Thus the importance sampling estimator is:

E[f] = lim
n→∞

1
n

n

∑
i=1

p(z)(i)

q(z)(i)
f (z(i)) (2.11)

20

with p(z)(i)

q(z)(i)
the importance weights. These quantities correct the bias introduced by the

proposal distribution leading to an unbiased estimator with variance sensitive to the choice of

the importance sampling distribution q(z). Unfortunately, importance sampling also suffers

from the curse of dimensionality. This is due to the fact that as the dimensionality increases

finding a good proposal distribution is impossible; thus, it fails to generate significant samples.

In the case of multivariate distributions with conjugate nature, we resort to Gibbs sampling

[118, 119]. The process involves choosing a new sample for each dimension separately from

the others. Below we summarize the Gibbs sampling process:

1. Pick initial values [zi : i = 1, ...,N] at random

2. For i in range N:

Sample zi from q(zi|z\i)

3. Go to 2 until M steps generated

where \i implies all the variables except i.

Finally, Markov Chain Monte Carlo (MCMC) [120] is a more general approach that allows

sampling from various distributions. As with importance sampling, we sample from a proposal

distribution with the difference that the distribution depends on the current state q(zt |zt−1). In

this context, consecutive samples are drawn in a way that tends to formulate a Markov chain

whereby consecutive samples obey the first order transition dynamics. That is, the density of

the sample drawn at the t iteration depends only on the value of the samples drawn at t−1.

After a candidate sample is drawn, we accept or reject it according to an acceptance criterion.

This is similar to rejection sampling with the difference that when a sample is rejected we stay

on the same state.

Under this construction, as we take steps on the Markov chain, we will eventually reach a

point where each update will leave the distribution invariant. This is known as the equilibrium

distribution and the steps needed, mixing time. Taking samples from the equilibrium distribu-

tion is the same as drawing samples from the desired distribution with the difference that the

samples are highly correlated. To alleviate this burden we often keep every mth sample with

m sufficiently large to alleviate the correlation. Metropolis-Hastings [121, 122] is one of the

most popular and widely known MCMC algorithms. Below we summarize the process:

1. Pick an initial state z0 at random (t = 0)

21

2. Randomly pick a new state zt from q(zt |zt−1)

3. Accept the state according to A(zt |zt−1)

For the symmetric proposal distribution, Metropolis choice is

A(zt+1|zt) = min(1,
q(zt+1)

q(z)
) (2.12)

For the nonsymmetric proposal distribution, Hastings choice is

A(zt+1|zt) = min(1,
T (zt |zt+1)q(zt+1)

T (zt+1|zt)q(z)
) (2.13)

4. Go to 2 until M states generated

2.3 Model Selection

Model selection is the process of selecting the best candidate from a collection of alternatives.

Expressing model selection under Bayesian inference we have the posterior:

p(mi|y) =
p(y|mi)p(mi)

p(y)
(2.14)

where p(mi|y) is the posterior probability of the model given the available data, y. The first

term in the equation’s numerator p(y|mi) is the likelihood function, the second term p(mi) is

the prior distribution of the model which expresses our intuition of how plausible the model is

with respect to alternative ones, and the denominator p(y) is the normalizing constant derived

by marginalizing over the different possible models. Thus, the evidence function reads:

p(y) = ∑ p(y|mi)p(mi) (2.15)

Finding the best model can be simplified by considering the same prior for all alternative

models. In such a case, selection consists in maximizing the likelihood function. However,

this is a simplistic approach, hence using a full Bayesian treatment is preferable in most real

world applications where epistemic uncertainty is an issue.

22

Chapter 3

Deep Network Regularization via
Bayesian Inference of Synaptic
Connectivity

Deep neural networks often require good regularizers to generalize well. Currently, state-of-

the-art DNN regularization techniques consist in randomly dropping units and/or connections

on each iteration of the training algorithm. Dropout and DropConnect are characteristic

examples of such regularizers, that are widely popular among practitioners. However, a

drawback of such approaches consists in the fact that their postulated probability of random

unit/connection omission is a constant that must be heuristically selected based on the obtained

performance in some validation set. To alleviate this burden, in this Chapter we regard the

DNN regularization problem from a Bayesian inference perspective: We impose a sparsity-

inducing prior over the network synaptic weights, where the sparsity is induced by a set of

Bernoulli-distributed binary variables with Beta (hyper-)priors over their prior parameters.

This way, we eventually allow for marginalizing over the DNN synaptic connectivity for

output generation, thus giving rise to an effective, heuristics-free, network regularization

scheme. We perform Bayesian inference for the resulting hierarchical model by means of an

efficient Black-Box Variational inference scheme. We exhibit the advantages of our method

over existing approaches by conducting an extensive experimental evaluation using benchmark

datasets.

The aforementioned innovative approach dubbed as DropConnect++ has been published in the

”Pacific-Asia Conference on Knowledge Discovery and Data Mining” in 2017 under the title

23

”Deep Network Regularization via Bayesian Inference of Synaptic Connectivity”.

3.1 Introduction

In the last few years, the field of machine learning has experienced a new wave of innovation;

this is due to the rise of a family of modeling techniques commonly referred to as deep neural

networks (DNNs) [18]. DNNs constitute large-scale neural networks, that have successfully

shown their great learning capacity in the context of diverse application areas. Since DNNs

comprise a huge number of trainable parameters, it is key that appropriate techniques be

employed to prevent them from overfitting. Indeed, it is now widely understood that one of the

main reasons behind the explosive success and popularity of DNNs consists in the availability

of simple, effective, and efficient regularization techniques, developed in the last few years

[18].

Dropout has been the first, and, expectably enough, the most popular regularization technique

for (dense-layer) DNNs [109]. In essence, it consists in randomly dropping different units

of the network on each iteration of the training algorithm. This way, only the parameters

related to a subset of the network units are trained on each iteration; this ameliorates the

associated network overfitting tendency, and it does so in a way that ensures that all network

parameters are effectively trained. In a different vein, [52] proposed randomly dropping

DNN synaptic connections, instead of network units (and all the associated parameters); they

dub this approach DropConnect. As showed therein, such a regularization scheme yields

better results than Dropout in several benchmark datasets, while offering provable bounds of

computational complexity.

Despite their merits, one drawback of these regularization schemes can be traced to their very

foundation and rationale: The postulated probability of random unit/connection omission (e.g.,

dropout rate) is a constant that must be heuristically selected; this is effected by evaluating

the network’s predictive performance under different selections of this probability, in some

validation set, and retaining the best performing value. This drawback has recently motivated

research on the theoretical properties of these techniques. Indeed, recent theoretical work at

the intersection of deep learning and Bayesian statistics has shown that Dropout can be viewed

as a simplified approximate Bayesian inference algorithm, and enjoys links with Gaussian

process models under certain simplistic assumptions [123, 109].

These recent results formed our main motivation behind DropConnect++. Specifically, the

24

main question the method aims to address is the following: Can we devise an effective Deep

network regularization scheme, that marginalizes over all possible configurations of network

synaptic connectivity (i.e., active synaptic connections), with the posterior over them being

inferred from the data? To address this problem, for the first time in the literature, we regard

the DNN regularization problem from the following Bayesian inference perspective: We

impose a sparsity-inducing prior over the network synaptic weights, where the sparsity is

induced by a set of Bernoulli-distributed binary variables. Further, the parameters of the

postulated Bernoulli-distributed binary variables are imposed appropriate Beta (hyper-)priors

over their prior parameters.

Under this hierarchical Bayesian construction, we can derive appropriate posteriors over the

postulated binary variables, which essentially function as indicators of whether some (possible)

synaptic connection is retained or dropped from the network. Once these posteriors are

obtained using some available training data, prediction can be performed by averaging (under

a Bayesian inference sense) over multiple (posterior) samples of the network configuration.

This inferential setup constitutes the main point of differentiation between our approach and

DropConnect. We finaly derive an efficient inference algorithm for our model by resorting to

the Black-Box Variational Inference (BBVI) [53].

The remainder of this Chapter is organized as follows: In the following section, we present

the theoretical background; DropConnect and the inferential framework that will be used in

the context of the proposed approach, namely BBVI. Next, we introduce our approach, and

derive its inference and prediction generation algorithms. Then, we perform an extensive

experimental evaluation of our approach, and compare to popular (dense-layer) DNN regular-

ization approaches, including Dropout and DropConnect. To this end, we consider a number

of well-established benchmarks in the related literature. Finally, in the concluding section, we

summarize our contribution and discuss our results.

3.2 Theoretical Background

3.2.1 DropConnect

DropConnect [52] is another form of regularization for dealing with overfitting of deep

networks that was inspired from Dropout. In essence, is a generalization of Dropout to the full

connection structure of a layer. The core difference consists in the fact that Dropout imposes

25

sparsity on the output vectors of a layer, while DropConnect imposes sparsity on the synaptic

weights W.

To make the generalization more clear lets observe the two regularizers more closely. When

dropout is applied to the layer we consequently drop the bundle of synaptic weights that lead

to the dropped unit. By contrast, DropConnect drops each synaptic weight independently.

As was presented in their paper, such a regularization scheme yields better results than Dropout

in several benchmark datasets, while offering provable bounds of computational complexity.

When applied, the output of the network’s layers is given by

r = a((M◦W)u) (3.1)

where ◦ is the elementwise product, a(·) is the adopted activation function, W is the matrix of

synaptic weights, u is the layer input vector, r is the layer output vector and M is a matrix of

binary variables (indicators) encoding the connection information. They are drawn indepen-

dently from Mi j ∼ Bernoulli(p) where i,j the weight correspondence and p the probability of

keeping the weight.

Training of a DropConnect layer begins by selecting an example u, and drawing a mask matrix

M from a Bernoulli(p) distribution to mask out elements of both the weight matrix and the

biases in the DropConnect layer. The parameters throughout the model can be updated via

stochastic gradient descent (SGD), or some modern variant of it, by backpropagating gradients

of the postulated loss function with respect to the parameters. To update the weight matrix

W in a DropConnect layer, the mask is applied to the gradient to update only those elements

that were active in the forward pass. Additionally, when passing gradients down, the masked

weight matrix Z ◦W is used.

At section 3.3, we will describe our approach of dealing with the heuristic parameter p of

the above regularization technique. In essence we provide a coherent Bayesian inference

treatment of DropConnect alleviating the need to heuristically define the parameter’s value by

using a data driven approach. Our approach gives insights in the ongoing scientific research of

full Bayesian approach of training deep networks.

26

3.2.2 Black-Box Variational Inference

In general, Bayesian inference for a statistical model can be performed either exactly, by

means of Markov Chain Monte Carlo (MCMC), or via approximate techniques. Variational

inference is the most widely used approximate technique; it approximates the posterior with a

simpler distribution, and fits that distribution so as to have minimum Kullback-Leibler (KL)

divergence from the exact posterior [124]. This way, variational inference effectively converts

the problem of approximating the posterior into an optimization problem.

One of the significant drawbacks of traditional variational inference consists in the fact that

its objective entails posterior expectations which are tractable only in the case of conjugate

postulated models. Hence, recent innovations in variational inference have attempted to allow

for rendering it feasible even in cases of more complex, non-conjugate model formulations.

Indeed, recently proposed solutions to this problem consist in using stochastic optimization,

by forming noisy gradients with Monte Carlo (MC) approximation. In this context, a number

of different techniques have been proposed so as to successfully reduce the unacceptably high

variance of conventional MC estimators. BBVI is one of these recently proposed alternatives,

amenable to non-conjugate probabilistic models that entail both discrete and continuous latent

variables.

Let us consider a probabilistic model p(x,z) with observations x and latent variables z, as well

as a sought variational family q(z;φ). BBVI optimizes an evidence lower bound (ELBO),

with expression

log p(x)≥L (φ) = Eq(z;φ)[log p(x,z)− logq(z;φ)] (3.2)

This is performed by relying on the “log-derivative trick” [125, 126] to obtain MC estimates

of the gradient. Specifically, by application of the identities

∇φ q(z;φ) = q(z;φ)∇φ logq(z;φ) (3.3)

Eq(z;φ)[∇φ logq(z;φ)] = 0 (3.4)

the gradient of the ELBO (3.2) reads

∇φL (φ) = Eq(z;φ)[f (z)] (3.5)

27

where

f (z) = ∇φ logq(z;φ) [log p(x,z)− logq(z;φ)] (3.6)

The so-obtained MC estimator, based on computing the posterior expectations Eq(z;φ)[·] via

sampling from q(z;φ), only requires evaluating the log-joint distribution log p(x,z), the log-

variational distribution logq(z;φ), and the score function ∇φ logq(z;φ), which is easy for a

large class of models. However, the resulting estimator may have high variance, especially if

the variational approximation q(z;φ) is a poor fit to the actual posterior. In order to reduce the

variance of the estimator, one common strategy in BBVI consists in the use of control variates.

A control variate is a random variable that is included in the estimator, preserving its expecta-

tion but reducing its variance. The most usual choice for control variates, which we adopt in

this work, is the so-called weighted score function: Under this selection, the ELBO gradient

becomes

∇φL (φ) = Eq(z;φ)[f (z)−ϖh(z)] (3.7)

where the score function reads

h(z) = ∇φ logq(z;φ) (3.8)

while the weights ϖ yield the (optimized) expression

ϖ =
Cov(f (z),h(z))

Var(h(z))
(3.9)

On this basis, derivation of the sought variational posteriors is performed by utilizing the

gradient expression (3.7) in the context of popular, off-the-shelf optimization algorithms, e.g.

AdaM [84] and Adagrad [81].

3.3 Proposed Approach

The output expression of a DropConnect++ layer is fundamentally similar to conventional

DropConnect, and is given by (3.1). However, DropConnect++ introduces an additional

28

hierarchical set of assumptions regarding the matrix of binary (mask) variables Z = [zi j]i, j,

which indicate whether a synaptic connection is inferred to be on or off.

Specifically, as usual in hierarchical graphical models, we assume that the random matrix Z is

drawn from an appropriate prior; we postulate

p(Z|Π) = ∏
i, j

p(zi j|πi j) = ∏
i, j

Bernoulli(zi j|πi j) (3.10)

Subsequently, to facilitate further regularization for the layers under a Bayesian inferen-

tial perspective, the prior parameters πi j , p(zi j = 1) are imposed their own (hyper-)prior.

Specifically, we elect to impose a Beta hyper-prior, yielding

p(πi j|α,β) = Beta(πi j|α,β), ∀i, j (3.11)

Under this definition, to train a postulated DNN incorporating DropConnect++ layers, we

need to resort to some sort of Bayesian inference technique; for this model we will resort to

BBVI which was explained in the previous subsection.

3.3.1 Training DNNs with DropConnect++ layers

Let us consider a DNN where the observed training data of which constitute the set D =

{dn}N
n=1. In case of a generative modeling scheme, each example dn is a single observation,

say xn, from the distribution we wish to model. On the other hand, in case of a discriminative

modeling task, each example dn is an input/output pair, for instance dn = (xn,yn). In both

cases, conventional DNN training consists in optimizing a negative loss function, measuring

the fit of the model to the training dataset D . Such measures can be equivalently expressed in

terms of a log-likelihood function log p(D); under this regard, DNN training effectively boils

down to maximum-likelihood estimation [127, 77].

The deviation of a DNN comprising DropConnect++ layers from this simple training scheme

stems from obtaining appropriate posterior distributions over the latent variables of Drop-

Connect++, namely the binary indicator matrices of synaptic connectivity, Z, as well as the

associated parameters with hyper-priors imposed over them, namely the matrices of (prior)

parameters Π. To this end, DropConnect++ postulates separate posteriors over each entry of

the random matrices Z, that correspond to each individual synapse, (i, j):

29

q(Z) = ∏
i, j

q(zi j|π̃i j), with : q(zi j|π̃i j) = Bernoulli(zi j|π̃i j) (3.12)

Further, we consider that the matrices of prior parameters, Π, yield a factorized (hyper-)

posterior with Beta-distributed factors of the form

q(πi j) = Beta(πi j|α̃i j, β̃i j) (3.13)

Our construction entails a conditional log-likelihood term, log p(D |Z). This is similar to a

conventional DNN, with the weight matrices W at each layer multiplied with the corresponding

latent indicator (mask) matrices, Z (in analogy to DropConnect). The corresponding posterior

expectation term, Eq(Z)[log p(D |Z)], constitutes part of the ELBO expression of our model.

Unfortunately, this term is analytically intractable due to the entailed nonlinear dependencies

on the indicator matrix Z, which stem from the nonlinear activation function a(·). Following

the previous discussion, we ameliorate this issue by resorting to an efficient approximation

obtained by drawing MC samples. The so-obtained ELBO functional expression eventually

becomes:

L (D)≈−∑
i, j

KL
[
q(zi j|π̃i j)||p(zi j|πi j)

]
−∑

i, j
KL
[
q(πi j|α̃i j, β̃i j)||p(πi j|α,β)

]
+

1
L

L,N

∑
l,n=1

log p(dn|Z(l))

(3.14)

where L is the number of samples, Z(l) = [z(l)i j]i, j and z(l)i j ∼ Bernoulli(zi j|π̃i j).

This concludes the formulation of the proposed inferential setup for a DNN that contains

DropConnect++ layers. On this basis, inference is performed by resorting to BBVI, which

proceeds as described previously. Denoting π̃ = (π̃i j)i, j, α̃ = (α̃i j)i, j, β̃ = (β̃i j)i, j, the used

ELBO gradient reads

∇
π̃,α̃,β̃ ,W L (D)≈1

L

L,N

∑
l,n=1

∇W log p(dn|Z(l))−∑
i, j

∇
π̃,α̃,β̃ KL

[
q(zi j|π̃i j)||p(zi j|πi j)

]
−∑

i, j
∇

α̃,β̃ KL
[
q(πi j|α̃i j, β̃i j)||p(πi j|α,β)

]
−ϖ ∑

i, j
∇

π̃,α̃,β̃ [logq(zi j|π̃i j)+q(πi j|α̃i j, β̃i j)]

(3.15)

30

where ϖ is defined in (3.9). As one can note, we do not perform Bayesian inference for the

synaptic weight parameters W . Instead, we obtain point-estimates, similar to conventional

DropConnect.

The KL divergence analysis that is used for the ELBO of Eq.(3.15) is:

KL[q(zi j|π̃i j)||p(zi j|πi j)
]
= π̃i jlogπ̃i j +(1− π̃i j)log(1− π̃i j)

− π̃i jEq(πi j)[logπi j]− (1− π̃i j)Eq(πi j)[log(1−πi j)]
(3.16)

KL
[
q(πi j|α̃i j, β̃i j)||p(πi j|α,β)

]
= logΓ(α̃i j + β̃i j)− logΓ(α̃i j)− logΓ(β̃i j)

+(α̃i j−α)Eq(πi j)[logπi j]+ (β̃i j−β)Eq(πi j)[log(1−πi j)]
(3.17)

where:

Eq(πi j)[logπi j] = ψ(α̃i j)−ψ(α̃i j + β̃i j) (3.18)

Eq(πi j)[log(1−πi j)] = ψ(β̃i j)−ψ(α̃i j + β̃i j) (3.19)

Γ(·) is the Gamma function, and ψ(·) is the Digamma function.

3.3.2 Feedforward computation in DNNs with DropConnect++ layers

Computation of the output of a trained DNN with DropConnect++ layers, given some network

input x∗, requires that we come up with an appropriate solution to the problem of computing

the posterior expectation of the DropConnect++ layers output, say r∗.

Let us consider a DropConnect++ layer with input u∗ (corresponding to a DNN input observa-

tion x∗); we have

r∗ = Eq(Z)[a((Z ◦W)u∗)] (3.20)

This computation essentially consists in marginalizing out the layer synaptic connectivity struc-

ture, by appropriately utilizing the variational posterior distribution q(Z), learned by means

of BBVI, as discussed in the previous subsection. Unfortunately, this posterior expectation

cannot be computed analytically, due to the nonlinear activation function a(·).

31

This problem can be solved by approximating (17) via simple MC sampling:

r∗ ≈
1
L

L

∑
l=1

a((Z(l) ◦W)u∗) (3.21)

where the Z(l) are drawn from q(Z). However, an issue such an approach suffers from is the

need to retain in memory large sample matrices {Z(l)}L
l=1, that may comprise millions of

entries, in cases of large-scale DNNs. To completely alleviate such computational efficiency

issues, in this work we opt for an alternative approximation that reads

r∗ ≈ a((Π̃◦W)u∗) (3.22)

where the matrix Π̃ = [π̃i j]i, j is obtained from the model training algorithm, described previ-

ously. Note that such an approximation is similar to the solution adopted by Dropout, which

undoubtedly constitutes the most popular DNN regularization technique to date. We shall

examine how this solution compares to MC sampling in the experimental subsection.

3.4 Experimental Evaluation

To empirically evaluate the performance of our approach, we consider a number of supervised

learning experiments, using the CIFAR-10, CIFAR-100, SVHN, and NORB benchmarks. In

all our experiments, the used datasets are normalized with local zero mean and unit variance;

no other pre-processing is implemented in this work1. To obtain some comparative results,

apart from our method we also evaluate in our experiments DNNs with similar architecture but:

(i) application of no regularization technique; (ii) regularized via Dropout; and (iii) regularized

via DropConnect.

In all cases, we use Adagrad with minibatch size equal to 128. Adagrad’s global stepsize is

chosen from the set {0.005,0.01,0.05}, based on the network performance on the training set

in the first few iterations2. The units of all the postulated DNNs comprise ReLU nonlinearities

1Hence, our experimental setup is not completely identical to that of related works, e.g. dropconnect; these

employ more complex pre-processing for some datasets.
2We have found that Adagrad allows for the best possible network regularization by drawing just one sample

per minibatch; that is, we use L = 1 at training time. This alleviates the training costs of both DropConnect and

DropConnect++. We train all networks for 100 epochs; we do not apply L2 weight decay.

32

Table 3.1: Predictive accuracy (%) of the evaluated methods.

Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 74.47 41.96 90.53 90.55

Dropout 75.70 46.65 92.14 92.07

DropConnect 76.06 46.12 91.41 91.88

DropConnect++ 76.54 47.01 91.99 93.75

Table 3.2: Computational complexity (sec) per iteration at training time (L = 1).

#Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 9 10 15 5

Dropout 9 10 15 5

DropConnect 9 10 15 5

DropConnect++ 10 13 19 6

[60]. Initialization of the network parameters is performed via Glorot-style uniform initializa-

tion [77]. To account for the effects of random initialization on the observed performances,

we repeat our experiments 50 times; we report the resulting mean accuracies, and run the

Student’s-t statistical significance test to examine the statistical significance of the reported

performance differences.

Prediction generation using our method is performed by employing the efficient approximation

(3.22). The alternative approach of relying on MC sampling to perform feedforward compu-

tation (3.21) is evaluated in subsection 3.4.7. In all cases, we set the prior hyperparameters

of DropConnect++ to α = β = 1; this is a convenient selection which reflects that we have

no preferred values for the priors πi j. The Dropout and DropConnect rates are selected on

the grounds of performance maximization, following the selection procedures reported in the

related literature. Our source codes have been developed in Python, using the Theano3 [128]

and Lasagne4 libraries. We run our experiments on an Intel Xeon 2.5GHz Quad-Core server

with 64GB RAM and an NVIDIA Tesla K40 GPU.
3http://deeplearning.net/software/theano/
4https://github.com/Lasagne/Lasagne.

33

http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne

CIFAR-10

The CIFAR-10 dataset consists of color images of size 32×32, that belong to 10 categories

(airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, trucks). We perform

our experiments using the available 50,000 training samples and 10,000 test samples. All the

evaluated methods comprise a convolutional architecture with three layers, 32 feature maps

in the first layer, 32 feature maps in the second layer, 64 feature maps in the third layer, a

5×5 filter size, and a max-pooling sublayer with a pool size of 3×3. These three layers are

followed by a dense layer with 64 hidden units, regularized via Dropout, DropConnect, or

DropConnect++. The resulting performance statistics (predictive accuracy) of the evaluated

methods are depicted in the first column of Table 3.1. As we observe, our approach outperforms

all the considered competitors.

CIFAR-100

The CIFAR-100 dataset consists of 50,000 training and 10,000 testing color images of size

32×32, that belong to 100 categories. We retain this split of the data into a training set and a

test set in the context of our experiments. The trained DNN comprises three convolutional

layers of same architecture as the ones adopted in the CIFAR-10 experiment, that are followed

by a dense layer comprising 512 hidden units. As we show in Table 3.1, our approach

outperforms all its competitors, yielding the best predictive performance. Note also that the

DropConnect method, which is closely related to our approach, yields in this experiment

worse results than Dropout.

SVHN

The Street View House Numbers (SVHN) dataset consists of 73,257 training and 26,032 test

color images of size 32x32; these depict house numbers collected by Google Street View. We

retain this split of the data into a training set and a test set in the context of our experiments,

and adopt exactly the same DNN architecture as in the CIFAR-100 experiment. As we show

in Table 3.1, our method improves over the related DropConnect method.

34

Table 3.3: Variation of the predictive accuracy (%) of the MC-driven approach (Eq:3.21) with

the number of MC samples.

#Samples, L CIFAR-10 CIFAR-100 SVHN NORB

1 74.57 43.28 91.32 90.04

30 75.95 46.33 91.70 90.78

50 76.01 46.33 91.72 91.04

100 76.01 46.54 91.78 91.41

500 76.36 46.94 91.78 91.58

NORB

The NORB (small) dataset comprises a collection of stereo images of 3D models that belong to

6 classes (animal, human, plane, truck, car, blank). We downsample the images from 96×96 to

32×32, and perform training and testing using the provided dataset split. We train DNNs with

architecture similar to the one adopted in the context of the SVHN and CIFAR-100 datasets.

As we show in Table 3.1, our method outperforms all the considered competitors.

3.4.1 Computational complexity

Another significant aspect that affects the efficacy of a regularization technique is its final

computational costs, and how they compare to the competition. To allow for investigating

this aspect, in Table 3.2 we illustrate the time needed to complete one iteration of the training

algorithms of the evaluated networks in our implementation. As we observe, the training

algorithm of our approach imposes an 11%-30% increase in the computational time per

iteration, depending on the sizes of the network and the dataset. Note though that DNN

training is an offline procedure; hence, a relatively small increase in the required training time

is reasonable, given the observed predictive performance gains.

On the other hand, when it comes to using a trained DNN for prediction generation (test time),

we emphasize that the computational costs of our approach are exactly the same as in the case

of Dropout. This is, indeed, the case due to our utilization of the approximation (3.22), which

results in similar feedforward computations for DropConnect++ as in the case of Dropout.

35

Figure 3.1: Accuracy convergence

3.4.2 Further investigation

A first issue that requires deeper investigation concerns the statistical significance of the

observed performance differences. Application of the Student’s-t test on the obtained sets of

performances of each method (after 50 experiment repetitions from different random starts)

has shown that these differences are statistically significant among all relevant pairs of methods

(i.e. DropConnect++ vs. DropConnect, DropConnect++ vs. DropOut, and DropConnect++ vs.

no regularization); only exception is the SVHN dataset, where DropConnect++ and DropOut

are shown to be of statistically comparable performance.

Further, in Table 3.3 we show how the predictive performance of DropConnect++ changes

if we perform feedforward computation via MC sampling, as described in (3.21). As we

observe, using only one MC sample results in rather poor performance; this changes fast as we

increase the number of samples. However, it appears that even with a high number of drawn

samples, the MC-driven approach (3.21) does not yield any performance improvement over

the approximation (3.22), despite imposing considerable computational overheads.

Further, in figure 3.1 we illustrate predictive accuracy convergence; for demonstration purposes,

we consider the experimental case of the CIFAR-10 benchmark. Our exhibition concerns both

application of the approximate feedforward computation rule (3.22), as well as resorting to

MC sampling. We observe a clear and consistent convergence pattern in both cases.

Finally, it is interesting to get a feeling of the values that take the inferred posterior probabilities,

π̃ , of synaptic connectivity. In figure 3.2, we illustrate the inferred values of π̃ for all the

network synapses, in the case of the CIFAR-10 experiment. As we observe, out of the almost

36

Figure 3.2: Inferred posterior probabilities, π̃ .

300K synapses, around 50K take values less than 0.35, another 50K take values greater than

0.6, while the rest 200K take values approximately in the interval [0.4,0.6]. This implies

that, out of the total 300K postulated synapses, almost half of them are most likely to be

omitted during inference. Most significantly, this figure depicts that our approach infers (in

a data-driven fashion) which specific synapses are most useful to the network (thus yielding

relatively high values of π̃i j), and which should rather be omitted. This is in contrast to existing

approaches, which merely apply a homogeneous, random omission/retention rate on each

layer.

3.5 Conclusions

In this last section, we examined whether there is a feasible way of performing DNN regulariza-

tion by marginalizing over network synaptic connectivity in a Bayesian manner. Specifically,

we sought to derive an appropriate posterior distribution over the network synaptic connec-

tivity, inferred from the data. To this end, we imposed a sparsity-inducing prior over the

network synaptic weights, where the sparsity is induced by a set of Bernoulli-distributed binary

variables. Further, we imposed appropriate Beta (hyper-)priors over the parameters of the

postulated Bernoulli-distributed binary variables. Under this hierarchical Bayesian construc-

tion, we obtained appropriate posteriors over the postulated binary variables, which indicate

which synaptic connections are retained and which are dropped during inference. This was

effected in an efficient and elegant fashion, by resorting to BBVI. We performed an extensive

experimental evaluation of our approach using several benchmark datasets. As we showed, in

37

most cases our approach yields a statistically significant performance improvement, without

compromises in computational efficiency, especially at test time (prediction generation).

38

Chapter 4

Asymmetric Deep Generative Models

Amortized variational inference, whereby the inferred latent variable posterior distributions are

parameterized by means of neural network functions, has invigorated a new wave of innovation

in the field of generative latent variable modeling, giving rise to the family of deep generative

models (DGMs). Existing DGM formulations are based on the assumption of a symmetric

Gaussian posterior over the model latent variables. This assumption, although mathematically

convenient, can be well-expected to undermine the eventually obtained representation power,

as it imposes apparent expressiveness limitations. Indeed, it has been recently shown that

even some moderate increase in the latent variable posterior expressiveness, obtained by

introducing an additional level of dependencies upon auxiliary (Gaussian) latent variables, can

result in significant performance improvements in the context of semi-supervised learning tasks.

Inspired from these advances, in this Chapter we examine whether a more potent increase in

the expressiveness and representation power of modern DGMs can be achieved by completely

relaxing their typical symmetric (Gaussian) latent variable posterior assumptions: Specifically,

we consider DGMs with asymmetric posteriors, formulated as restricted multivariate skew-

Normal (rMSN) distributions. We derive an efficient amortized variational inference algorithm

for the proposed model, and exhibit its superiority over the current state-of-the-art in several

semi-supervised learning benchmarks.

The aforementioned innovative approach dubbed as AsyDGM has been published in the

journal ”Neurocomputing” in 2017 under the title ”Asymmetric deep generative models”.

39

4.1 Introduction

Amortized variational inference [55, 129, 98, 130], whereby the inferred latent variable poste-

riors are parameterized via deep neural networks, is currently at the epicenter of the research

on generative latent variable modeling. The class of DGMs has arisen as the outcome of this

research line. Existing DGM formulations postulate symmetric (Gaussian) posteriors over the

model latent variables. This assumption, although computationally efficient, may undermine

the representation power of DGMs, as it imposes apparent expressiveness limitations [131].

To address these issues, in one of the most recent developments in the field, [132] proposed

the skip DGM (SDGM); this model introduces an extra layer of auxiliary latent variables, also

imposed symmetric Gaussian posteriors, with the original latent variable posteriors assumed

to be conditioned upon the auxiliary latent variables. Apparently, such a hierarchical latent

variable construction gives rise to obtained variational posteriors with more expressiveness

and representation power. Indeed, [132] have provided broad empirical evidence corroborat-

ing these claims, by showing that SDGM yields the state-of-the-art performance in several

semi-supervised learning benchmarks.

Inspired from these advances, in this Chapter we examine whether we can achieve a higher

level of expressiveness and representation power for the latent variable posteriors of modern

DGMs by completely relaxing their typical symmetric (Gaussian) latent variable posterior

assumptions. Indeed, in many applied problems, the data to be analyzed may contain a

group or groups of observations whose distributions are moderately or severely skewed.

Unfortunately, typical DGM formulations based on Gaussian posterior assumptions cannot

effectively model data of such nature: A slight deviation from normality may seriously

affect the obtained estimates, subsequently misleading inference from the data. Therefore,

accounting for asymmetric effects and skewness in the modeled data may allow for significant

improvements in the potency of DGM models. On this basis, in this work we introduce the

novel class of asymmetric DGMs (AsyDGMs), characterized by asymmetric latent variable

posteriors, that are formulated as restricted multivariate skew-Normal (rMSN) distributions

[133, 134].

In recent years, there has been growing interest in studying generative models based on latent

variables with skew-elliptical distributions [135, 136], both in the univariate and multivariate

cases. Their popularity with the statistics community mainly stems from them being regarded

as a more general tool for handling heterogeneous data that involve asymmetric behavior across

sub-populations. For instance, [137] and [138] proposed mixtures of multivariate skew-normal

40

and t-distributions based on a restricted variant of the skew-elliptical family of distributions of

[134]; [139] gave a systematic overview of various existing multivariate skew distributions and

clarified their conditioning-type and convolution-type representations. There also is a small

corpus of works proposing generative models the latent variables of which are imposed skewed

priors. These are shallow, factor analysis-type models, which provide strong motivation for the

work presented in this Chapter. For instance, [140] proposed mixtures of shifted asymmetric

Laplace factor analyzers; [141] proposed mixtures of generalized hyperbolic factor analyzers;

[142] proposed mixtures of skew-t factor analyzers. Finally, very recently, a finite mixture

model of rMSN-distributed factor analyzers was proposed in [143], and an efficient EM

algorithm comprising closed-form updates was derived for model training.

We derive an efficient inference algorithm for the proposed AsyDGM approach by resorting to

an elegant amortized variational inference algorithm, similar to existing DGMs. To exhibit the

efficacy of our approach, and its superiority over existing symmetrically-distributed DGMs,

we perform a series of experimental evaluations. Specifically, we focus on challenging

semi-supervised learning tasks, where DGM-type classifier training is performed with a very

limited number of labeled examples. We show that our approach yields the state-of-the-

art performance in these benchmarks, with a significant improvement over the second-best

method.

The remainder of this chapter is organized as follows: In the following Section, we provide

a brief overview of the theoretical foundation of our work: We first present the Variational

Auto Encoder (VAE), further we introduce the rMSN distribution; then, we briefly present the

SDGM model, which constitutes the latest development in the field of DGMs, when it comes

to addressing challenging semi-supervised learning tasks. Next, we introduce our approach,

and derive its inference and prediction generation algorithms. In the subsequent experimental

Section, we perform an exhaustive empirical evaluation of our approach, using well-known

semi-supervised learning benchmarks. Finally, in the concluding Section of this chapter, we

summarize our contribution and discuss our results.

41

4.2 Theoretical Foundation

4.2.1 Variational Auto-Encoder

The VAE is a generative model that attempts to learn the underlying distribution of high

dimensional data with complex dynamics. To this end, VAE uses amortized variational

inference (AVI). AVI represents the sought (approximate) variational posterior distribution

over the model latent variables via an inference network. The imposed inference network

learns an inverse map from observations to latent variables. This way it alleviates the need

to compute per data point variational parameters by computing a set of global variational

parameters, valid for inference at both training and test time. Thus, the cost of inference is

amortized by generalizing between the posterior estimates for all latent variables through the

parameters of the inference network, under a simple feedforward computation scheme with

complexity O(N) where N the number of datapoints.

Let us consider a dataset X = {xn}N
n=1 consisting of N samples of some observed random

variable x. We assume that the observed random variable is generated by some random

process, involving an unobserved continuous random variable z. In this context, we introduce

a conditional independence assumption for the observed variables x given the corresponding

latent variables z; we adopt the conditional likelihood function p(x|z;θ).

To perform Bayesian inference for the latent variables, we impose some prior distribution

p(z;ϕ). Under this formulation, the log-marginal likelihood of the model with respect to the

dataset X yields the following lower bound expression

logp(X)≥L (θ ,ϕ,φ |X) =
N

∑
i=1

{
−KL

[
q(zi;φ)||p(zi;ϕ)

]
+Eq(zi;φ)[logp(xi|zi;θ)]

}
(4.1)

where KL
[
q||p

]
is the KL divergence between the distribution q(·) and the distribution p(·),

q(z;φ) is the sought approximate (variational) posterior over the latent variable z, while

Eq(z;φ)[·] is the (posterior) expectation of a function with respect to the random variable z, the

distribution of which is taken to be the posterior q(z;φ).

AVI assumes that the adopted likelihood and prior distributions come from a parametric family,

and that their probability density functions are differentiable almost everywhere with respect

to the parameters θ and ϕ , and the (latent) variables z. Specifically, AVI assumes that the

likelihood function of the model, as well as the resulting latent variable posterior, q(z;φ), are

42

parameterized via deep neural networks. This yields a non-conjugate model construction,

which does not allow to analytically derive the expression of Eq(zi;φ)[log p(xi|zi;θ)], and,

hence, of the derivative of L (θ ,ϕ,φ |X). Besides, attempting to resolve this issue by means

of a naive Monte Carlo gradient estimator is not an option in our context, due to its entailed

prohibitively high variance that renders it completely impractical [144].

AVI resolves these issues by reparameterizing the random samples of z∼ q(z;φ) using an ap-

propriate differentiable transformation of an (auxiliary) random noise variable ε . Specifically,

by drawing L samples, the ELBO expression becomes

L (θ ,ϕ,φ |X) =
N

∑
i=1

{
−KL

[
q(zi;φ)||p(zi;ϕ)

]
+

1
L

L

∑
l=1

log p(xi|z(l)i ;θ)

}
(4.2)

where, considering a Gaussian posterior of the form

q(zi;φ) = N (zi|µφ (xi),diag σ
2
φ (xi)) (4.3)

we have:

z(l)i = µφ (xi)+σφ (xi) · ε(l)i (4.4)

In Eq.(4.4), ε
(l)
i is white random noise with unitary variance, i.e. ε

(l)
i ∼N (0, I), the µφ (xi)

and σ2
φ
(xi) are parameterized via deep neural networks, and diag χ is a diagonal matrix with

χ on its main diagonal.

As we observe, the key difference between AVI and, say, a naive Monte Carlo estimator,

is that the drawn samples of z, used to approximate the intractable posterior expectation

Eq(zi;φ)[log p(xi|zi;θ)], are now taken as functions of the parameters φ of the posterior q(zi;φ)

that we seek to optimize. As proven in [129], this formulation of the inference algorithm

allows for yielding low variance estimators, under some mild conditions.

4.2.2 The rMSN distribution

We continue with a brief review of the rMSN distribution. To establish notation, let N (·|µ,Σ)
be the probability density function (pdf) of multivariate Gaussian with mean vector µ and

variance–covariance matrix Σ, and Φ(·) be the cumulative distribution function (cdf) of the

43

standard normal distribution. Further, let T N(·|µ,σ2;(a,b)) denote the truncated normal

distribution for N (·|µ,σ2) lying within a truncated interval (a,b).

Following [138], a random vector x ∈ Rd is said to follow an rMSN distribution with location

vector µ , dispersion matrix Σ, and skewness vector λ , denoted by x∼ rSN(µ,Σ,λ), if it can

be represented as

x|u∼N (µ +λu,Σ)

u∼ T N(0,1;(0,∞))
(4.5)

Here, the truncated Normal distribution T N(u|µu,σ
2
u ;(0,∞)) with mean µu, variance σ2

u , and

bounds in (0,∞), is defined as

T N(u|µu,σ
2
u ;(0,∞)) =

N (u|µu,σ
2
u)

Φ(µu/σu)
I(u > 0) (4.6)

where I(·) is an indicator function. Hence, we observe that an rMSN-distributed variable can

be equivalently expressed under a Gaussian conditional distribution, where the introduced

conditioning latent variable follows a standard truncated normal density.

On this basis, [143] have recently proposed a generalization of the traditional factor analysis

(FA) model, namely the SNFA model, where the latent variables (factors) are assumed to

follow an rMSN distribution within the family defined by (4.5). Let us denote as x ∈ Rp the

p-dimensional observations we wish to model via an SNFA model. Denoting as z ∈ Rq the

inferred latent factors vectors (q < p), we have [143]

p(x|z) = N (µ +Bz,D) (4.7)

and

p(z) = rSN(z|− c∆
−1/2

λ ,∆−1,∆−1/2
λ) (4.8)

where µ is a p-dimensional location vector, B is a parameter matrix of the SNFA model (factor

loadings), D is a diagonal covariance matrix, c ,
√

2/π , λ is the skewness vector of the

model, and

∆ , I +(1− c2)λλ
T (4.9)

44

As shown in [143], by using the definition (4.5) of the rMSN distribution, this asymmetric

factor analysis model can be equivalently expressed under the following three-level hierarchical

representation:

p(x|z̃) = N (µ +Bg(z̃),D) (4.10)

p(z̃|u) = N (z̃|(u− c)λ , I) (4.11)

and

u∼ T N(0,1;(0,∞)) (4.12)

where

g(z̃) = ∆
−1/2z̃ (4.13)

Under this equivalent representation, the SNFA model yields a simple prior formulation that is

amenable to a computationally efficient EM training algorithm with closed-form expressions

[143].

4.2.3 Skip Deep Generative Models

As discussed in the Introduction, modern developments in the field of variational inference

focus on using deep learning techniques to parameterize the variational posteriors of latent

variable models. This gives rise to powerful probabilistic models, usually referred to as DGMs,

constructed by an inference neural network that parameterizes the posterior q(z|x), and a

generative neural network that parameterizes the conditional likelihood p(x|z).

To allow for keeping the computational requirements low, the variational distribution q(z|x)
is usually chosen to be a diagonal Gaussian. Despite the computational attractiveness of this

approximation, it is quite apparent though that such an assumption may not allow for capturing

intricate latent dynamics in the modeled data, as well as modeling data of asymmetric nature.

Hence, one could expect that by relaxing these diagonal Gaussian posterior assumptions, one

may yield DGMs with increased expressive power.

45

Recently, [132] proposed an way of ameliorating these issues of DGMs by drawing inspiration

from the variational auxiliary variable approach of [145]. The so-obtained Skip-DGM(SDGM)

extends the variational distribution with some auxiliary variables a, such that

q(a,z|x) = q(z|a;x)q(a|x) (4.14)

and

q(z|x) =
∫

q(a,z|x)da (4.15)

where both the postulated variational posteriors q(z|a;x) and q(a|x) are typical inference

networks with diagonal Gaussian form. Under such a two-level hierarchical formulation, it

becomes well-expected that the marginal distribution q(z|x) will be able to fit more complicated

posteriors compared to conventional (one-level) diagonal Gaussian distribution-based DGM

formulations. Indeed, [132] have shown that the SDGM approach can be utilized in the context

of semi-supervised learning tasks, with the goal of building a potent classifier, capable of

obtaining state-of-the-art performance in challenging datasets by being trained with limited

labeled examples combined with large unlabeled datasets.

More specifically, denoting as x the observed vectors presented as input to the postulated

classifier, and as y the corresponding label variables, SDGM consecutively postulates the

following generative (i.e., conditional likelihood and prior) assumptions [132]:

pθ (x|a,z,y) = f (x,a,z,y;θ) (4.16)

pθ (a|z,y) = f (a,z,y;θ) (4.17)

p(y) = Cat(y|π) (4.18)

p(z) = N (z|0, I) (4.19)

where f (x,a,z,y;θ) is a categorical or diagonal Gaussian for discrete and continuous obser-

vations x, respectively, and f (a,z,y;θ) is a diagonal Gaussian. Both pθ (·) distributions are

46

parameterized by deep neural networks with parameters θ . On the other hand, the derived

variational posteriors (inference model) are assumed to take on the following form:

qφ (a|x) = N (a|µ(x;φ),diagσ
2(x;φ)) (4.20)

qφ (z|a,x,y) = N (z|µ(a,x,y;φ),diagσ
2(a,x,y;φ)) (4.21)

qφ (y|a,x) = Cat(y|π(a,x;φ)) (4.22)

[the computed (output) probabilities of the network π(a,x;φ) are the ones used to perform the

classification task]. Note that, in order to parameterize the diagonal Gaussians pθ (·) and qφ (·)
in Eqs. (4.16)-(4.17) and (4.20)-(4.21), respectively, [132] define two separate outputs from

the top deterministic layer in the corresponding deep neural networks, one for the distribution

mean and one for the distribution (log-)variance.

An issue variational inference for DGM-type models, including SDGM, is confronted with

is the analytical intractability of the expressions of the entailed expectations of the model

latent variables with respect to the sought approximate (variational) posteriors. This is due

to their nonconjugate formulation, as a consequence of their nonlinear parameterization via

deep neural networks. Specifically, considering a training set D = {(xn,yn)}N
n=1 comprising

N samples, the expression of the evidence lower bound (ELBO) of SDGM yields:

L (θ ,φ |D) =
N

∑
n=1

{
−KL

[
qφ (zn|an,xn,yn)||p(zn)

]
−KL

[
qφ (an|xn)||pθ (an|zn,yn)

]
−KL

[
qφ (yn|an,xn)||p(yn)

]
+Eqφ (z,a|x,y)[log pθ (xn|an,zn,yn)]

}
(4.23)

where KL
[
q||p

]
is the KL divergence between the distribution q(·) and the distribution p(·).

Under the assumed nonlinear (hence, nonconjugate) model construction, it is easy to observe

that neither the ELBO L (θ ,φ |D) nor its derivatives with respect to the parameter sets θ and

φ can be computed analytically. In addition, opting for a naive Monte Carlo gradient estimator

is not an option in our context, due to its entailed prohibitively high variance that renders it

completely impractical for our purposes [144].

47

These issues can be addressed by resorting to the popular reparameterization trick [129],

commonly employed in the context of amortized variational inference. This consists in

approximating the posterior expectations in (4.23) as averages over a set of L samples from

the corresponding Gaussian posteriors, {a(l)n ,z(l)n }L
l=1; the latter samples are expressed as

differentiable transformations of the form ξ φ (ε) of the posterior parameters φ given some

random noise input ε . Specifically, we have [132]:

a(l) = ξ φ (ε
(l);x) = µ(x;φ)+σ(x;φ)◦ ε

(l) (4.24)

and

z(l) =ξ φ (ε
(l);a,x,y)

=µ(a(l),x,y;φ)+σ(a(l),x,y;φ)◦ ε
(l)

(4.25)

where ◦ is the elementwise product, and the ε(l) are white random noise samples with unitary

variance, i.e. ε(l) ∼N (0, I).

4.3 Proposed Approach

In the following, we introduce a DGM where the latent variables of which are assumed to

follow rMSN distributions. Since in this work we are interested in semi-supervised learning

tasks, our exposition and derivations will be performed in the context of the graphical model

of SDGM. However, a similar asymmetric modeling scheme can be employed in the context

of any desired graphical formulation for a postulated DGM.

To define our model, we elect to express the rMSN-distributed latent variables under the

equivalent three-level hierarchical representation scheme adopted by [143], described by Eqs.

(4.10)-(4.13). On this basis, our proposed AsyDGM consecutively postulates the following

generative (i.e., conditional likelihood and prior) assumptions:

pθ (x|a,z,y) = f (x,g(a),g(z),y;θ) (4.26)

pθ (a|z,u,y) = f (a,g(z),u,y;θ) (4.27)

48

p(y) = Cat(y|π) (4.28)

p(z|u) = N (z|(u− c)λ , I) (4.29)

p(u) = T N(u|0,1;(0,∞)) (4.30)

where [denoting ξ ∈ {z,a}]:

g(ξ), ∆
−1/2

ξ (4.31)

∆ , I +(1− c2)λλ
T (4.32)

c ,
√

2/π , λ is the skewness vector of the model, and the pdf’s f (·) in (4.26) and (4.27) are

defined similar to SDGM.

On this basis, the derived variational posteriors (inference model) of AsyDGM are assumed to

take on the following form:

qφ (y|a,x) = Cat(y|π(a,x;φ)) (4.33)

qφ (a|x,u) = N (a|µ(x,u;φ),diagσ
2(x,u;φ)) (4.34)

qφ (z|u,a,x,y) = N (z|µ(u,a,x,y;φ),diagσ
2(u,a,x,y;φ)) (4.35)

and

qφ (u|x) = T N(u|m(x;φ),s2(x;φ),(0,∞)) (4.36)

where

µ(u,a,x,y;φ) = µ(u,h(a,x,y);φ) (4.37)

49

and

σ
2(u,a,x,y;φ) = σ

2(u,h(a,x,y);φ) (4.38)

All the postulated generative and inference networks, which parameterize the generative

components pθ (·) and the variational posteriors qφ (·) of AsyDGM, constitute deep neural

networks. In cases of Gaussian or truncated Gaussian densities, these networks define two

separate outputs from their top deterministic layer, one for the distribution mean and one for

the distribution (log-)variance. Specifically, we have

µ(x,u;φ) = Linear(u,h1(x)) (4.39)

σ
2(x,u;φ) = exp(Linear(u,h1(x))) (4.40)

π(a,x;φ) = Softmax(h2(a,x)) (4.41)

m(x;φ) = Linear(h3(x)) (4.42)

s2(x;φ) = exp(Linear(h3(x))) (4.43)

µ(u,a,x,y;φ) = Linear(u,h(a,x,y)) (4.44)

σ
2(u,a,x,y;φ) = exp(Linear(u,h(a,x,y))) (4.45)

where Linear(·) is a linear layer, Softmax(·) is a softmax layer, and the h1(·), h2(·), h3(·), and

h(·) are deep neural networks.

Note also our introduced linear dependence assumptions for the mean and variance of

qφ (z|u,a,x,y) and qφ (a|x,u) upon the latent variable u [Eqs. (4.44)-(4.45) and (4.39)-(4.40),

respectively]. This selection is motivated by the related derivations that apply to the case of

simple factor analysis-type models postulating rMSN-distributed latent factors, e.g. [143]. In

50

addition, it facilitates the derivation of a computationally efficient inference algorithm for the

proposed model. Specifically, the ELBO expression of AsyDGM can be shown to yield

L (θ ,φ |D) =
N

∑
n=1

{
−KL

[
qφ (un|xn)||p(un)]

−KL
[
qφ (zn|un,an,xn,yn)||p(zn|un)

]
−KL

[
qφ (an|xn,un)||pθ (an|zn,un,yn)

]
−KL

[
qφ (yn|an,xn)||p(yn)

]
+Eqφ (z),qφ (a)[log pθ (xn|an,zn,yn)]

}
(4.46)

Computation of the term KL
[
qφ (un|xn)||p(un)] in (4.46) can be tractably performed in an

analytical fashion. In addition, due to the aforementioned linear dependence scheme, the same

holds for the posterior expectations with respect to q(u) which are entailed in the computation

of KL
[
qφ (zn|un,an,xn,yn)||p(zn|un)

]
and KL

[
qφ (an|xn,un)||pθ (an|zn,un,yn)

]
. This way, the

need of applying the reparameterization trick in the context of the inference algorithm of

AsyDGM is limited to the latent vectors z and a (similar to SDGM). This clearly facilitates

computational efficiency for our method, since application of the reparameterization trick in

the case of truncated normal distributions would require computation of Gaussian quantile

functions, which is quite complex.

4.4 Expiremental Evaluation

To exhibit the efficacy of our approach, we perform evaluation in a series of challenging

semi-supervised learning tasks. We especially focus on tasks that entail high-dimensional

observations with several artifacts that render the Gaussian assumption too simplistic; these

include both skewness and outliers. In the experimental evaluations of subsections 4.4.1 and

4.4.2, we randomly split the available datasets into a training set and a test set that contain

half of the available video frames in each case. In the experimental evaluations of subsections

4.4.1-4.4.3, we retain a randomly selected 10% of the available training data labels, and

we discard the rest; the used deep neural networks [denoted as hk(·) in Eqs. (4.39)-(4.45)]

comprise two fully connected hidden layers, with 50 ReLU [146] units each, while the size of

the latent vectors z, as well as the auxiliary latent vectors, a, is set to 50. In the experimental

evaluations of subsection 4.4.4, we use the available splits of the considered datasets into a

51

training set and a test set; network configuration is adopted from [132], while the number of

retained training data labels is provided in Table 4.3.

In all cases, to alleviate the effect of this random dataset selection, we repeat our experiments

50 times, with different splits of the data each time. To provide some comparative results, apart

from our method we also evaluate in the same experiments some alternative DGM-type models,

recently proposed for addressing the problem of semi-supervised learning. Specifically, we

compare to the closely-related SGDM method [132], the M1+M2 and M1+TSVM approaches

proposed in [98] and the VAT approach recently presented in [147].

In all our experiments, the matrix power ∆
−1/2 entailed in (4.31) is approximated by means of

a first-order Taylor expansion; this facilitates computational efficiency. Specifically, we have

∆
−1/2 =(I +(1− c2)λλ

T)−1/2

≈I− 1
2
(1− c2)λλ

T
(4.47)

To optimize the ELBO L (θ ,φ |D) of our model with respect to its trainable parameters,

we resort to the Adam optimization algorithm [84]; we use a learning rate of 3×10−4, and

an exponential decay rate for the first and second moment at 0.9 and 0.999, respectively.

Initialization of the network parameters is performed by adopting a Glorot-style uniform

initialization scheme [77]. Model training is performed using only one sample from qφ (z)

and qφ (a), i.e. L = 1; it is currently well-known that using L > 1 samples in the context of

amortized variational inference does not yield any noticeable improvement over L = 1, as long

as the used batch-size is quite large (effectively, at least 100 samples) [129, 98, 55].

Our source codes have been developed in Python, and make use of the Theano1 [128],

Lasagne2, and Parmesan3 libraries, as well as source code from the authors of [132]4.

4.4.1 Workflow recognition dataset

We first consider a public benchmark dataset involving action recognition of humans, namely

the Workflow Recognition database [148]. Specifically, we use the first two workflows

pertaining to car assembly (see [148] for more details). The frame-level tasks to recognize in

1http://deeplearning.net/software/theano/
2https://github.com/Lasagne/Lasagne
3https://github.com/casperkaae/parmesan
4https://github.com/larsmaaloee/auxiliary-deep-generative-models

52

http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne
https://github.com/casperkaae/parmesan
https://github.com/larsmaaloee/auxiliary-deep-generative-models

these workflows are the following:

1. Worker 1 picks up part 1 from rack 1 (upper) and places it on the welding cell; mean

duration is 8-10 sec.

2. Worker 1 and worker 2 pick part 2a from rack 2 and place it on the welding cell.

3. Worker 1 and worker 2 pick part 2b from rack 3 and place it on the welding cell.

4. Worker 2 picks up spare parts 3a, 3b from rack 4 and places them on the welding cell.

5. Worker 2 picks up spare part 4 from rack 1 and places it on the welding cell.

6. Worker 1 and worker 2 pick up part 5 from rack 5 and place it on the welding cell.

Feature extraction is performed as follows: To extract the spatiotemporal variations, we

use pixel change history images to capture the motion history (see, e.g., [149]), and com-

pute the complex Zernike moments A00,A11,A20,A22,A31,A33, A40,A42,A44,A51,A53,A55,

A60,A62,A64,A66, for each of which we compute the norm and the angle. Additionally the

center of gravity and the area of the found blobs are also used. In total, this feature extraction

procedure results in 31-dimensional observation vectors. Zernike moments are calculated

in rectangular regions of interest of approximately 15K pixels in each image to limit the

processing and allow real time feature extraction (performed at a rate of approximately 50-60

fps). In our experiments, we use a total of 40 sequences representing full assembly cycles and

containing at least one of the considered behaviors, with each sequence being approximately

1K frames long. Frame annotation has been performed manually. We provide the so-obtained

test error rates of the evaluated methods in Table 4.1. As we observe, our approach yields a

statistically significant improvement over the competition.

4.4.2 Honeybee dance dataset

Further, we evaluate our method using the Honeybee Dance dataset [150]; it contains video

sequences of honeybees which communicate the location and distance to a food source through

a dance that takes place within the hive. The dance can be decomposed into three different

movement patterns that must be recognized by the evaluated algorithms: waggle, right-turn,

and left-turn. During the waggle dance, the bee moves roughly in a straight line while rapidly

shaking its body from left to right; the duration and orientation of this phase correspond to the

53

Table 4.1: Activity recognition experiments: Test error (%) of the evaluated methods (means

and standard deviations over multiple repetitions).

Method Workflow Recognition Honeybee Dance

M1+TSVM 22.12 (±0.05) 45.48 (±0.11)

M1+M2 20.58 (±0.05) 38.62 (±0.10)

VAT 17.29 (±0.05) 36.13 (±0.14)

SDGM 13.90 (±0.04) 30.38 (±0.14)

AsyDGM 13.02 (±0.03) 24.11 (±0.12)

distance and the orientation to the food source. At the endpoint of a waggle dance, the bee turns

in a clockwise or counter-clockwise direction to form a turning dance. Our dataset consists of

six video sequences with lengths 1058, 1125, 1054, 757, 609, and 814 frames, respectively,

and is based on the raw pixel change history images, without further preprocessing, contrary

to the previous experiment; this renders this experimental scenario more challenging for all the

evaluated deep generative models. The obtained results are provided in Table 4.1. We observe

that our approach yields a clear improvement over the competition, including an almost 20%

improvement over the second best performing method.

4.4.3 Yearly song classifciation using audio features

In this experiment, we consider application of our method to automatic prediction of a

song track’s release year. This problem entails surprisingly challenging complexity issues,

stemming from the great diversity of style and genre of the songs released each year. Under

this motivation, we utilize a subset of the “Million song dataset” benchmark [151], which

comprises 515,345 tracks with available release year information (both training and test sets).

The tracks are mostly western, commercial tracks ranging from 1922 to 2011, with a peak in the

year 2000 and onwards. Apart from the year, the dataset provides 90 additional representative

features; of these 90 attributes, 12 are timbre average and 78 are timbre covariance, all extracted

from the timbre features. We use these 90-dimensional feature vectors as the observations

presented to the evaluated methods.

In our experiments, our goal is to differentiate between songs written in the 1980s, 1990s, and

2000s. For this purpose, we randomly select 10% of the training set songs released in these

decades as our labeled training data; the remainder of the available training data pertaining

54

Table 4.2: Song classification experiments: Test error (%) of the evaluated methods (means

and standard deviations over multiple repetitions).

Method Performance

M1+TSVM 38.12 (±0.12)

M1+M2 36.49 (±0.13)

VAT 37.44 (±0.13)

SDGM 33.16 (±0.11)

AsyDGM 28.30 (±0.10)

to these decades is used as our unlabeled training dataset (i.e., with their labels considered

missing). Subsequently, all methods are evaluated on the grounds of correctly classifying

the test set tracks (included in the dataset) that pertain to these three decades. The obtained

results are provided in Table 4.2. As we observe, the proposed approach outperforms all its

competitors, yielding notable and statistically significant performance differences.

4.4.4 Image classifcation benchmarks

Finally, we evaluate our method on two popular benchmark datasets dealing with image

classification, namely MNIST and small NORB. The popularity of these datasets facilitates

transparency in our comparisons with the existing literature. MNIST comprises a total of

60,000 training samples, which constitute images of handwritten digits, with size 28×28.

On the other hand, the small NORB dataset comprises 24,300 training samples and an equal

amount of test samples; these constitute images of size 32×32, and are distributed across 5

classes: animal, human, plane, truck, car.

In Table 4.3, we report the obtained performance of our method, alongside the number of

retained training data labels in each case. We also cite the performances of related methods

reported in the recent literature. As we observe, our method turns out to yield results merely

comparable to SDGM in the case of the MNIST dataset. This outcome is probably reasonable,

since MNIST is a rather easy dataset, with clear underlying structural patterns, and absence of

artifacts such as skewness or outliers. Therefore, one would not expect substantial room for

improvement obtained by means of a method designed to account for such artifacts.

The obtained comparative empirical outcome changes in the case of the NORB dataset, where

our method does yield a statistically significant performance improvement over the second best

55

Table 4.3: Image classification benchmarks: Test error (%) of the evaluated methods (means

and standard deviations over multiple repetitions).

Method MNIST NORB

#Training Labels 100 1000

M1+TSVM 11.82 (±0.25) 18.79 (±0.05)

M1+M2 3.33 (±0.14) -

VAT 2.12 9.88

SDGM 1.32 (±0.07) 9.40 (±0.04)

AsyDGM 1.34 (±0.08) 9.03 (±0.02)

performing method. Indeed, one could claim that this performance difference is not as high

as in the previously considered experimental scenarios. We argue though that this outcome

could be easily expected: The nature of NORB, which comprises images of some simple

objects without significant clutter, is much less likely to give rise to modeling problems related

with skewness, atypical data, and outliers. Such problems though can become extremely

prominent when dealing with noisy signals such as music, as well as when dealing with

activity recognition in video sequences, where such artifacts are much more common.

4.4.5 A note on computational complexity

We underline that the extra computational costs of our method are solely associated with

learning of the skewness vectors λ . These costs are only limited to the training algorithm of the

model, and do not constitute a significant complexity increase, due to our approximation (4.47).

Hence, computational complexity for the training algorithm of our method is comparable to

SDGM; indeed, we have experimentally observed requirements of the same order of magnitude

in computational time. Note also that training algorithm convergence has been empirically

found to be similarly fast in both the cases of our model and of its main competitor, i.e. SDGM,

in all the conducted experiments. On the other hand, the computational performance of our

method in test time is (almost) identical to SDGM, since both approaches essentially require

the same set of feedforward computations.

56

4.5 Conclusions

This Chapter constitutes an attempt to increase the effectiveness and representation power

of the learned latent variable posteriors of DGMs in a principled, rather than an ad hoc,

fashion. To this end, we drew inspiration from recent developments in the field of multivariate

analysis: It has been recently shown that shallow, factor analysis-type, latent variable models

are capable of yielding a significantly increased representation power by postulating latent

variables with skew-elliptical distributions. On this basis, we examined whether similar

benefits could be obtained for DGMs, by introducing an asymmetric DGM formulation, based

on rMSN-distributed latent variables.

Since in this work we focused on the problem of semi-supervised learning, we exhibited the

derivation of our approach in the context of a graphical formulation also adopted by the recently

proposed SDGM approach. To allow for the derivation of an elegant inference algorithm

for our model, we utilized a three-level hierarchical representation of the rMSN distribution,

inspired from [143]. We examined the efficacy of our approach in several experimental

scenarios, using benchmark datasets. As we showed, our method proves to be more effective

than the competition in terms of modeling and predictive performance when artifacts such as

skewness and outliers are prevalent in the observed data. These empirical results corroborate

our theoretical claims.

57

Chapter 5

Deep Learning with t-Exponential
Bayesian Kitchen Sinks

As we have already discussed, Bayesian learning has been recently considered as an effective

means of accounting for uncertainty in trained deep network parameters. On the other hand,

shallow models that compute weighted sums of their inputs, after passing them through a

bank of arbitrary randomized nonlinearities, have been recently shown to enjoy good test

error bounds that depend on the number of nonlinearities. Inspired from these advances, in

this Chapter we examine novel deep network architectures, where each layer comprises a

bank of arbitrary nonlinearities, linearly combined using multiple alternative sets of weights.

Our proposed networks are efficiently trained by means of variational inference based on a

t-divergence measure; this generalizes the Kullback-Leibler divergence in the context of the

t-exponential family of distributions. We extensively evaluate our approach using several

challenging benchmarks, and provide comparative results to related state-of-the-art techniques.

The aforementioned innovative approach dubbed as DtBKS is in press for the journal ”Expert

Systems with Applications” under the title ”Deep Learning with t-Exponential Bayesian

Kitchen Sinks”.

5.1 Introduction

DNNs have experienced a resurgence of interest; this is due to recent breakthroughs in the

field that offer unprecedented empirical results in several challenging real-world tasks, such as

59

image and video understanding [152], natural language understanding and generation [153],

and game playing [154]. Most DNN models are trained by means of some variant of the

backpropagation (BP) algorithm. However, despite all these successes, BP suffers from the

major shortcoming of being able to obtain only point-estimates of the trained networks. This

fact results in the trained networks generating predictions that do not account for uncertainty,

e.g. due to the limited or sparse nature of the available training data.

A potential solution towards the amelioration of these issues consists in treating some network

components under the Bayesian inference rationale, instead of stochastic optimization [155].

Specifically, in this Chapter we are interested in inference of the network feature functions. In

the literature, this is effected by considering them as stochastic latent variables imposed some

mathematically convenient Gaussian process prior [156]. On this basis, one proceeds to infer

the corresponding posteriors, based on the available training data. To the latter end, and with

the goal of combining accuracy with computational efficiency, expectation-propagation [157],

mean-field [156], and probabilistic backpropagation [158] have been used.

One of the main driving forces behind the unparalleled data modeling and predictive per-

formance of modern DNNs is their capability of effectively learning to extract informative,

high-level, hierarchical representations of observed data with latent structure [18]. Never-

theless, DNNs are not the only class of models that entail this sort of functionality. Indeed,

major advances in machine learning have long been dominated by the development of shallow

architectures that compute weighted sums of feature functions; the latter generate nonlinear

representations of their input data, which can be determined under a multitude of alternative

rationales. For instance, models that belong to the family of support vector machines (SVMs)

[159] essentially compute weighted sums of positive definite kernels; boosting algorithms,

such as AdaBoost [160], compute weighted sums of weak learners, such as decision trees. In

all cases, both the feature functions as well as the associated weights are learned under an

empirical risk minimization rationale; for instance, the hinge loss is used in the context of

SVMs, while AdaBoost utilizes the exponential loss.

In the same vein, the machine learning community has recently examined a bold, yet quite

promising possibility: postulating weighted sums of random kitchen sinks (RKS) [161]. The

main rationale of this family of approaches essentially consists in randomly drawing the

employed feature functions (nonlinearities), and limiting model training to the associated

(scalar) weights. Specifically, the (entailed parameters of the) postulated nonlinearities are

randomly sampled from an appropriate density, which is a priori determined by the practitioners

according to some assumptions [162, 163]. As it has been shown, both through theoretical

60

analysis as well as some empirical evidence, such a modeling approach does not yield much

inferior performance for a trained classifier compared to the mainstream approach of optimally

selecting the employed nonlinearities. In addition, predictive performance is shown to increase

with the size of the employed bank of randomly drawn nonlinearities.

Inspired from these advances, this Chapter introduces a fresh regard towards DNNs: We

formulate each DNN layer as a bank of random nonlinearities, which are linearly combined in

multiple alternative fashions. This way, the postulated models eventually yield a hierarchical

cascade of informative representations of their multivariate observation inputs, that can be

used to effectively drive a penultimate regression or classification layer. At each layer, the

employed bank of random nonlinearities is sampled from an appropriate postulated density, in

a vein similar to RKS. However, in order to alleviate the burden of having to manually design

these densities, we elect to infer them in a Bayesian sense. In addition, we elect not to obtain

point-estimates of the weights used for combining the drawn nonlinearities. On the contrary,

we perform Bayesian inference over them, so as to better account for model uncertainty.

As already discussed, Bayesian inference for DNN type models can be performed under

various alternative paradigms. Here, we resort to variational inference ideas, which consist

in searching for a proxy in an analytically solvable distribution family that approximates the

true underlying posterior distribution. To measure the closeness between the true and the

approximate posterior, the relative entropy between these two distributions is used. Specifically,

under the typical Gaussian assumption, one can use the Shannon-Boltzmann-Gibbs (SBG)

entropy, whereby the relative entropy yields the well known Kullback-Leibler (KL) divergence

[164]. However, real world phenomena tend to entail densities with heavier tails than the

simplistic Gaussian assumption.

To account for these facts, in this work we exploit the t-exponential family1, which was first

proposed by Tsallis and co-workers [165, 166, 167], and constitutes a special case of the

more general φ-exponential family [168, 169, 170]. Of specific practical interest to us is the

Students’-t density; this is a bell-shaped distribution with heavier tails and one more parameter

(degrees of freedom - DOF) compared to the normal distribution, and tends to a normal

distribution for large DOF values [171]. Hence, it provides a much more robust approach to the

fitting of models with Gaussian assumptions. On top of these merits, the t-exponential family

also gives rise to a new t-divergence measure; this can be used for performing approximate

inference in a fashion that better accommodates heavy-tailed densities (compared to standard

1Also referred to as the q-exponential family or the Tsallis distribution.

61

KL-based solutions) [172].

To summarize, we formulate a hierarchical (multilayer) model, each layer of which comprises

a bank of random feature functions (nonlinearities). Each nonlinearity is presented with the

layer’s input, and generates scalar outputs. These outputs are linearly combined by using

multiple alternative sets of mixing weights, to produce the (multivariate) layer’s output. At each

layer, the postulated nonlinearities are drawn from an appropriate (posterior) density, which is

inferred from the data (as opposed to the requirement of conventional RKS that the practitioners

manually specify this distribution). Indeed, both the posterior density of the nonlinearities,

as well as the posterior over the mixing weights, are inferred in an approximate Bayesian

fashion. In order to allow for our model to account for heavy tails, we postulate that the

sought densities belong to the t-exponential family, specifically they constitute (multivariate)

Student’s-t densities. On this basis, we conduct approximate inference by optimizing a t-

divergence functional, that better leverages the advantages of the t-exponential family. We dub

our proposed approach the Deep t-Exponential Bayesian Kitchen Sinks(DtBKS) model.

The remainder of this Chapter is organized as follows: In the following section, we provide

a brief overview of the methodological background of our approach. Subsequently, we

introduce our approach, and derive its training and inference algorithms. Then, we perform

the experimental evaluation of our approach, and illustrate its merits over the current state-of-

the-art. Finally, in the concluding section of this chapter, we summarize our contribution and

discuss our results.

5.2 Methodological Background

5.2.1 Weighted Sums of Random Kitchen Sinks

Consider the problem of fitting a function f : Rδ → Y to a training dataset comprising N

input-output pairs {xn,yn}N
n=1, drawn i.i.d. from some unknown distribution P(x,y), with

xn ∈ Rδ and yn ∈ Y . In essence, this fitting problem consists in finding a function f that

minimizes the empirical risk on the training data

R[f] =
1
N

N

∑
n=1

c(f (xn),yn) (5.1)

where the cost function c(f (x),y) defines the penalty we impose on the deviation between the

62

prediction f (x) and the actual value y.

The main underlying idea of data modeling under the weighted sums of RKS rationale consists

in postulating functions of the form

f (x) =
S

∑
s=1

αsξ (x;ωs) (5.2)

where the {αs}S
s=1 are mixing weights, while the nonlinear feature functions ξ are parame-

terized by some vector ω ∈Ω, and are bounded s.t.: |ξ (x;ωs)| ≤ 1. Specifically, the vectors

ωs are samples drawn from an appropriate probability distribution p(ω) with support in Ω,

whence we have ξ : Rδ ×Ω→ [−1,1].

As an outcome of this construction, the fitted function f (x) can be essentially viewed as

a weighted sum of a bank of random nonlinearities, ξ , drawn by appropriately sampling

from a selected probability distribution p(ω). On this basis, the fitting procedure reduces to

selecting the weight values {αs}S
s=1, such that we minimize the empirical risk (5.1); typically,

a quadratic loss function is employed to this end. As shown in [57], for S→∞, weighted sums

of RKS yield predictive models whose true risk is near the lowest true risk attainable by an

infinite-dimensional class of functions with optimally selected parameter sets, ω .

Weighted sums of RKS give rise to a modeling paradigm with quite appealing properties: It

allows for seamlessly and efficiently employing arbitrarily complex feature functions ξ , since

model fitting is limited to the mixing weights; this way, we can easily experiment with feature

functions that do not admit simple fitting procedures. On the other hand, RKS require one to

(manually) design appropriate distributions p(ω) to draw the employed nonlinearities from; in

real-world data modeling tasks, this might prove quite challenging a task.

5.2.2 The Student’s-t Distribution

The adoption of the multivariate Student’s-t distribution provides a way to broaden the

Gaussian distribution for potential outliers. The probability density function (pdf) of a

Student’s-t distribution with mean vector µ , covariance matrix Σ, and ν > 0 degrees of

freedom is [173]

t(yt ; µ,Σ,ν) =
Γ

(
ν+δ

2

)
|Σ|−1/2(πν)−δ/2

Γ(ν/2){1+d(yt ,µ;Σ)/ν}(ν+δ)/2
(5.3)

63

Figure 5.1: Univariate Student’s-t distribution t(yt ; µ,Σ,ν), with µ , Σ fixed, for various values

of ν [176].

where δ is the dimensionality of the observations yt , d(yt ,µ;Σ) is the squared Mahalanobis

distance between yt ,µ with covariance matrix Σ

d(yt ,µ;Σ) = (yt−µ)T
Σ
−1(yt−µ) (5.4)

and Γ(s) is the Gamma function, Γ(s) =
∫

∞

0 e−tzs−1dz.

A graphical illustration of the univariate Student’s-t distribution, with µ , Σ fixed, and for

various values of the degrees of freedom ν , is provided in figure 5.1. As we observe, as ν→∞,

the Student’s-t distribution tends to a Gaussian with the same µ and Σ. On the contrary, as ν

tends to zero, the tails of the distribution become longer, thus allowing for a better handling of

potential outliers, without affecting the mean or the covariance of the distribution [174, 175].

5.2.3 The t-Divergence

The t-divergence was introduced in [172] as follows:

Definition 1. The t-divergence between two distributions, q(h) and p(h), is defined as

64

Dt(q||p) =
∫

q̃(h)logtq(h)dh− q̃(h)logt p(h)dh (5.5)

where q̃(h) is called the escort distribution of q(h), and is given by

q̃(h) =
q(h)t∫
q(h)tdh

, t ∈ R (5.6)

Importantly, the divergence Dt(q||p) preserves the following two properties:

• Dt(q||p)≥ 0, ∀q, p. The equality holds only for q = p.

• Dt(q||p) 6= Dt(p||q).

As discussed in [172], by leveraging the above definition of the t-divergence, Dt(q||p), one

can establish an advanced variational inference framework, much more appropriate for fitting

heavy-tailed densities. We exploit these benefits in developing the training algorithm of the

proposed DtBKS model, as we shall explain in the following Section.

5.3 Proposed Approach

5.3.1 Model Formulation

Let us consider a DtBKS model with input variables x ∈Rδ and output (predictable) variables

y, comprising L layers. In figure 5.2, we provide a graphical illustration of the proposed

configuration of one DtBKS model layer. Each layer, l, is presented with an input vector

hl−1, generated from the preceding layer; at the first layer, this vector is the model input,

h0 , x. This is fed into a bank comprising S randomly drawn feature functions, {ξ l
s (h

l−1)}S
s=1.

Specifically, these functions are nonlinearities parameterized by some random vector ω; i.e.,

ξ l
s (h

l−1) = ξ (hl−1;ω l
s). The used samples ω l

s are drawn from an appropriate density, which

is inferred in a Bayesian sense, as we shall explain next.

This way, we eventually obtain a set of S univariate signals, which we linearly combine to

obtain the layer’s output. Specifcally, we elect to (linearly) combine them in multiple alterna-

tive ways, with the goal of obtaining a potent, multidimensional, high-level representation of

the original observations. These alternative combinations are computed via a mixing weight

65

matrix, W l ∈ Rη×S, where η is the desired dimensionality of the layer’s output (i.e., the

postulated number of alternative linear combinations).

Eventually, the output vectors at the layers l ∈ {1, . . . ,L−1} yield

hl =W l[ξ (hl−1;ω
l
s)]

S
s=1 ∈ Rη (5.7)

where [χs]
S
s=1 denotes the vector-concatenation of the set {χs}S

s=1. Turning to the penultimate

layer of the model, we consider that the output variables are imposed an appropriate conditional

likelihood function, the form of which depends on the type of the addressed task. Specifically,

in the case of regression tasks, we postulate a multivariate Gaussian of the form

p(y|x) = N

(
y
∣∣∣∣W L[ξ (hL−1;ω

L
s)]

S
s=1,σ

2
y I
)

(5.8)

where σ2
y is the noise variance. On the other hand, in case of classification tasks, we assume

p(y|x) = Softmax
(

y
∣∣∣∣W L[ξ (hL−1;ω

L
s)]

S
s=1

)
(5.9)

This concludes the definition of our model. For brevity, we shall omit the layer indices, l, in

the remainder of this chapter, wherever applicable.

5.3.2 Model Training

To allow for inferring the distribution that the employed feature functions, ξ , must be drawn

from, we first consider that the vectors ω that parameterize them are Student’s-t distributed

latent variables. We employ the same assumption for the weight matrices, W , which we

also want to infer in a Bayesian fashion, so as to account for model uncertainty. Specifically,

we start by imposing a simple, zero-mean Student’s-t prior distribution over them, with tied

degrees of freedom, at each model layer:

p(ω) = t(ω|0, I,ν) (5.10)

p(W) = t(vec(W)|0, I,ν) (5.11)

66

Figure 5.2: Graphical illustration of the configuration of one DtBKS model layer.

where vec(·) is the matrix vectorization operation, and ν > 0 is the degrees of freedom

hyperparameter of the imposed priors.

On this basis, we seek to devise an efficient means of inferring the corresponding posterior

distributions, given the available training data. To this end, we postulate that the sought poste-

riors approximately take the form of Student’s-t densities with means, diagonal covariance

matrices, and degrees of freedom inferred from the data. Hence, we have:

q(ω;φ) = t(ω|µω ,diag(σ2
ω),νω) (5.12)

q(W ;φ) = t(vec(W)|µW ,diag(σ2
W),νW) (5.13)

where φ = {µ i,σ
2
i ,νi}i∈{ω,W}, and νi > 0,∀i, for all model layers.

To perform training in a way the best exploits the heavy tails of the developed model, we

minimize the t-divergence between the sought variational posterior and the postulated joint

density over the observed data and the model latent variables. Thus, the proposed model

training objective becomes

67

q(ω;φ),q(W ;φ) = argmin
q(·)

Dt (q(ω;φ),q(W ;φ)||p(y;ω,W)) (5.14)

By application of simple algebra, the expression of the t-divergence in (5.14) yields

Dt
(
q(ω;φ),q(W ;φ)||p(y;ω,W)

)
=

= Dt (q(ω;φ)||p(ω))+Dt (q(W ;φ)||p(W))−Eq̃(ω,W ;φ)[logp(y|x)]
(5.15)

where q̃(ω,W ;φ) is the escort distribution of the sought posterior, and the t-divergence terms

pertaining to the parameters ω and W are summed over all model layers. Then, following

[172], and based on (5.12)-(5.13), we obtain that the t-divergence expressions in (5.15) can be

written in the following form:

Dt (q(θ ;φ)||p(θ)) = ∑
i

{
Ψqi

1− t

(
1+

1
νθ

)
−

Ψp

1− t

(
1+

[σ2
θ
]i +[µθ]

2
i

ν

)}
(5.16)

where θ ∈ {ω,vec(W)}, [ζ]i is the ith element of a vector ζ , we denote

Ψqi ,

(
Γ(νθ+1

2)

Γ(νθ

2)(πνθ)1/2[σθ]i

)− 2
νθ+1

(5.17)

Ψp ,

(
Γ(ν+1

2)

Γ(ν

2)(πν)1/2

)− 2
ν+1

(5.18)

and the free hyperparameter t is set as suggested in [177], yielding:

t =
2

1+νθ

+1 (5.19)

As we observe from the preceding discussion, the expectation of the conditional log-likelihood

of our model, Eq̃(ω,W ;φ)[logp(y|x)], is computed with respect to the escort distributions of the

sought posteriors. Therefore, at training time, the banks of the employed feature functions

(i.e., the samples of their parameters, {ωs}S
s=1), must be drawn from the escort distributions

of the derived posteriors.

Turning to the employed mixing weight matrices, W , our consideration of them being latent

variables with an inferred posterior perplexes computation of the expressions (5.7)-(5.9);

indeed, it requires that we compute appropriate posterior expectations of these expressions

68

with respect to W . To circumvent this problem, we draw multiple samples of the mixing

weight matrices, {W s}S
s=1, in an MC fashion, and average over the corresponding outcomes to

compute the model output. At training time, Eq. (5.15) implies that these samples must also

be drawn from the escort distributions of the derived posteriors.

Based on the previous results, and following [172], we can easily obtain the expressions of

these escort distributions of the derived posteriors, that we need to sample from at training

time. Specifically, it is easy to show that these escort distributions yield a factorized form, that

reads:

q̃(θ ;φ) = t
(

θ |µθ ,
νθ

νθ +2
diag(σ2

θ),νθ +2
)
,∀θ ∈ {ω,vec(W)} (5.20)

Notably, our variational inference algorithm yields an MC estimator of the proposed DtBKS

model. Unfortunately, MC estimators are notorious for their vulnerability to unacceptably

high variance. In this work, we resolve these issues by adopting the reparameterization trick

of [129], adapted to the t-exponential family. This trick consists in a smart reparameterization

of the MC samples, {θ s}S
s=1, drawn from a distribution θ ∼ q(θ ;φ); this is obtained via a

differentiable transformation gφ (ε) of an (auxiliary) random variable ε with low variance:

θ = gφ (ε) with ε ∼ p(ε) (5.21)

In our case, the smart reparameterization of the MC samples drawn from the Student’s-t escort

densities (5.20) yields the expression:

θ s = θ(εs) = µθ +

(
νθ

νθ +2

)1/2

σθ εs (5.22)

where εs is random Student’s-t noise with unitary variance:

εs ∼ t(0, I,νθ +2) (5.23)

On this basis, at training time, we replace the samples of both the weight matrices, W , as well

as the feature function parameters, ω , with the expression (5.22), where sampling is performed

with respect to the low-variance random variable ε . Then, the resulting (reparameterized)

t-divergence objective (5.15) can be minimized by means of any off-the-shelf stochastic

optimization algorithm, yielding low variance estimators. To this end, in this work we utilize

AdaM [84]. We initialize the sought posterior hyperparameters by setting them equal to the

hyperparameters of the imposed priors.

69

5.3.3 Inference Algorithm

Having obtained a training algorithm for our proposed DtBKS model, we can now proceed to

elaborate on how inference is performed using our method. To this end, it is needed that we

compute the posterior expectation of the model’s output, as usual when performing Bayesian

inference. Thus, at inference time, we need to draw samples from the derived posteriors,

(5.12) and (5.13), in an MC fashion. This entails drawing from the posteriors, at each layer,

of a set comprising S samples of: (i) the vectors ω that parameterize the employed feature

functions; and (ii) the mixing weight matrices, W , used to combine the outputs of the drawn

banks of feature functions. Note that this is in contrast to the training algorithm of DtBKS,

where the use of the t-divergence objective (5.15) gives rise to the requirement of drawing

from the associated escort distributions (5.20), while the need of training reliable estimators

requires utilization of the reparameterization trick.

5.4 Experimental Evaluation

In this Section, we perform a thorough experimental evaluation of our proposed DtBKS

model. We provide a quantitative assessment of the efficacy, the effectiveness, and the

computational efficiency of our approach, combined with deep qualitative insights into few

of its key performance characteristics. To this end, we consider several benchmarks from

the UCI machine learning repository (UCI-Rep) [178] that pertain to both regression and

classification tasks, as well as the well-known InfiMNIST classification benchmark [179].

The considered datasets, as well as their main characteristics (i.e., their number of training

examples, N, and input dimensionality, δ) are summarized in Table 5.1a for regression and

Table 5.1b for classification tasks.

With the exception of the ISOLET dataset from UCI-Rep, as well as InfiMNIST, the rest of

the considered benchmarks do not provide a split into training and test sets. In these cases, we

account for this lack by running our experiments 20 times, with different random data splits

into training and test sets, and compute performance means and standard deviations; we use a

randomly selected 90% of the data for model training, and the rest for evaluation purposes. In

the case of regression tasks, we use the root mean square error (RMSE) as our performance

metric; we employ the predictive error rate for the considered classification benchmarks.

To obtain some comparative results, we also evaluate an existing alternative approach for

70

Ta
bl

e
5.

1:
O

bt
ai

ne
d

pe
rf

or
m

an
ce

fo
rb

es
tm

od
el

co
nfi

gu
ra

tio
n

(t
he

lo
w

er
th

e
be

tte
r)

D
at

as
et

N
δ

D
tB

K
S

D
G

P
D

ro
po

ut

B
os

to
n

H
ou

si
ng

50
6

13
0.

29
39
±

0.
04

(L
=

2,
η
=

3)
0.

38
97
±

0.
1

0.
25

16
±

0.
06

C
on

cr
et

e
10

30
8

0.
32

13
±

0.
02

(L
=

2,
η
=

5)
0.

45
01
±

0.
03

0.
32

28
±

0.
03

E
ne

rg
y

76
8

8
0.

12
85
±

0.
01

(L
=

2,
η
=

6)
0.

16
36
±

0.
02

0.
13

22
±

0.
01

Po
w

er
Pl

an
t

95
68

4
0.

23
66
±

0.
01

(L
=

3,
η
=

4)
0.

24
01
±

0.
01

0.
22

36
±

0.
01

Pr
ot

ei
n

45
73

0
9

0.
61

13
±

0.
01

(L
=

2,
η
=

9)
0.

67
34
±

0.
01

0.
74

53
±

0.
01

W
in

e
(W

hi
te

)
48

98
11

0.
76

84
±

0.
02

(L
=

2,
η
=

11
)

0.
80

72
±

0.
02

0.
76

09
±

0.
02

W
in

e
(R

ed
)

15
88

11
0.

75
64
±

0.
04

(L
=

2,
η
=

5)
0.

77
91
±

0.
04

0.
75

70
±

0.
05

(a
)R

eg
re

ss
io

n
ta

sk
s

D
at

as
et

N
δ

D
tB

K
S

D
G

P
D

ro
po

ut

B
re

as
t(

w
db

c)
56

9
30

0.
01

16
±

0.
01

(L
=

2,
η
=

21
)

0.
01

16
±

0.
01

0.
07

10
±

0.
06

IS
O

L
E

T
77

97
61

7
0.

05
52
±

N
A

(L
=

2,
η
=

20
5)

0.
06

54
±

N
A

0.
12

56
±

N
A

G
as

Se
ns

or
13

91
0

12
8

0.
01

36
±

0.
00

2
(L

=
2,

η
=

10
6)

0.
00

94
±

0.
00

2
0.

06
88
±

0.
07

Pa
rk

in
so

n’
s

19
7

22
0.

06
58
±

0.
05

(L
=

2,
η
=

15
)

0.
08

42
±

0.
05

0.
09

76
±

0.
09

Sp
am

46
01

56
0.

05
43
±

0.
01

(L
=

2,
η
=

46
)

0.
05

17
±

0.
01

0.
16

29
±

0.
03

L
SV

T
12

6
31

0
0.

13
75
±

0.
07

(L
=

2,
η
=

51
)

0.
32

50
±

0.
11

0.
37

82
±

0.
17

In
fiM

N
IS

T
8+

M
ill

io
n

78
4

0.
00

93
±

N
A

(L
=

2,
η
=

10
0)

0.
00

96
±

N
A

0.
00

96
±

N
A

(b
)C

la
ss

ifi
ca

tio
n

ta
sk

s

71

Bayesian inference of deep network nonlinearities, namely deep Gaussian processes (DGPs)

[156]. Specifically, we evaluate the most recent variant of DGPs, presented in [180], which

allows for the model to efficiently scale to large datasets. Finally, we also provide comparisons

to a state-of-the-art Deep Learning approach, namely a Dropout network.

In all cases, our specification of the priors imposed on DtBKS considers a low value for the

degrees of freedom hyperparameter, ν = 2.1. In the case of regression tasks, we employ a

noise variance equal to σ2
y = exp(−2). Turning to the selection of the form of the drawn

feature functions, ξ , we consider a simple trigonometric formulation, which is inspired from

the theory of random Fourier projections of RBF kernels [181]. Specifically, we postulate

ξ (x;ω) = 1
2cos(ωT x)+ 1

2sin(ωT x). For computational efficiency, we limit the number of

drawn samples to 100, during both DtBKS training and inference on the test data. AdaM is

run with the default hyperparameter values.

DGP is evaluated considering multiple selections of the number of Gaussian processes per

layer, as well as the number of layers, using RBF kernels and arc-cosine kernels [180]; in

each experimental case, we report results pertaining to the best-performing DGP configuration.

Similar is the case for Dropout networks, which are evaluated considering multiple alterna-

tives for the number of layers and the output size of each hidden layer; we employ ReLU

nonlinearities [182].

Our source codes have been developed in Python, using the Tensorflow library [43]. We have

also made use of a DGP implementation provided by M. Filippone2. We run our experiments

on an Intel Xeon 2.5GHz Quad-Core server with 64GB RAM and an NVIDIA Tesla K40

GPU.

5.4.1 Comparative Results

We begin our exposition by providing the best empirical performance of our method, and

showing how it compares to the competition. These outcomes have been obtained by experi-

menting with different selections for the number of DtBKS layers, L, and the output size of

each hidden layer, η (i.e., for l ∈ {1, . . . ,L−1}). Our results are outlined in Tables 5.1a and

5.1b; in all cases, we provide therein (in parentheses) the DtBKS model configuration that

obtained the reported (best empirical) performance.

We observe that our approach outperforms DGP in the considered regression benchmarks; in

2https://github.com/mauriziofilippone/deep_gp_random_features

72

https://github.com/mauriziofilippone/deep_gp_random_features

Figure 5.3: DtBKS performance fluctuation with the number of layers, L, and the output size

of each hidden layer, η (as a fraction of input dimensionality, δ)

(a) L = 2

(b) L = 3

(c) L = 4

73

all cases, these empirical performance differences are found to be statistically significant, by

running the paired Student’s-t test. On the other hand, DtBKS outperforms DGP in only three

out of the seven considered classification benchmarks, with statistically significant differences

(according to the paired Student’s-t test), while yielding comparable outcomes in the rest.

In addition, DtBKS outperforms Dropout in all the considered classification benchmarks,

except for InfiMNIST; the paired Student’s-t test shows that these empirical performance

differences are statistically significant. On the other hand, DtBKS significantly outperforms

Dropout in the Protein regression benchmark, while yielding comparable performance in the

rest considered regression tasks (according to the outcomes of the paired Student’s-t test).

5.4.2 Further Investigation

Further, it is interesting to provide a feeling of how DtBKS model performance changes with

the selection of the number of layers, L, and the dimensionality of each hidden layer, η (i.e.,

for l ∈ {1, . . . ,L−1}). To examine these aspects, in figure 5.3 we plot model performance

fluctuation with η , setting the number of layers equal to L = 2,3, and 4, respectively, for few

characteristic experimental cases. As we observe, DtBKS performance is significantly affected

by both these selections. Note also that the associated performance fluctuation patterns of

DtBKS are quite different among the illustrated examples. These findings are congruent with

the behavior of all existing state-of-the-art deep learning approaches. It is also important to

mention the high standard deviation of the observed performances in some cases where we set

L = 4; we attribute this unstable behavior to overfitting due to insufficient training data.

5.4.3 Are t-Exponential Bayesian Kitchen Sinks More Potent Than Ran-
dom Kitchen Sinks?

Finally, it is extremely interesting to examine how beneficial it is for DtBKS to infer a posterior

distribution over the (random variables that parameterize the) employed feature functions,

instead of using a simple, manually selected density. To examine this aspect, we repeat our

experiments by drawing the vectors ω , that parameterize the feature functions, ξ , from the

postulated simple priors, p(ω). Hence, we adopt an RKS-type rationale in drawing the feature

functions, ξ , as opposed to utilizing the inferred posteriors, q(ω) [or their corresponding

escort distributions, q̃(ω), during training].

Our findings are provided in Table 5.2; these results correspond to selections of the number

74

Dataset Performance

Boston Housing 0.3199±0.04

Concrete 0.3586±0.04

Energy 0.1494±0.01

Power Plant 0.2301±0.01

Protein 0.7110±0.01

Wine (White) 0.7787±0.02

Wine (Red) 0.7720±0.04

Breast Cancer Diagnostic (wdbc) 0.0188±0.02

ISOLET 0.2245±NA

Gas Sensor 0.0175±0.003

Parkinson’s 0.0895±0.06

Spam 0.0748±0.01

LSVT Voice Rehabilitation 0.1208±0.04

InfiMNIST 0.0603±NA

Table 5.2: DtBKS performance when replacing t-Exponential Bayesian Kitchen Sinks with

Random Kitchen Sinks.

of layers, L, and the output size, η , similar to the values reported in Tables 5.1a and 5.1b.

Our empirical evidence is quite conspicuous: (i) merely drawing the postulated nonlinearities

from a simple prior, yet inferring a Student’s-t posterior over the mixing weights, W , as

discussed previously, yields notably competitive performance; (ii) inferring posteriors over the

nonlinearities, under the discussed DtBKS rationale, gives a statistically significant boost to

the obtained modeling performance, except for Power Plant and LSVT, where we reckon that

overfitting is induced (due to insufficient training data availability).

5.4.4 Computational Complexity

Another significant aspect that affects the efficacy of a machine learning technique is its

computational complexity. To investigate this aspect, we first scrutinize the derived DtBKS

training algorithm, both regarding its asymptotic behavior, as well as in terms of its total

computational costs. Our observations can be summarized as follows: For the model configu-

rations yielding the performance statistics of Tables 5.1a and 5.1b, DtBKS takes on average 4

times longer than Dropout per training algorithm iteration, probably due to the entailed Γ(·)

75

functions in (5.16), and their derivatives; DGP takes on average 2 times longer than Dropout.

On the other hand, DtBKS training converges faster than all the considered competitors, while

DGP converges much faster than Dropout. These differences are so immense that, as an

outcome, the total training time of all the evaluated methods turns out to be comparable, in

all the considered benchmarks. Finally, we have observed that DtBKS and DGP take similar

time to generate one prediction as a Dropout network of the same size (number of parameters).

This is a well-expected behavior, since feedforward computation in all approaches entails

computational primitives with complexity of the same order of magnitude. Hence, we deduce

that DtBKS yields the observed predictive performance improvement without undermining

computational efficiency and scalability.

5.5 Conclusions

In this chapter, we introduced a fresh view towards deep learning, which consists in postulating

banks of randomly drawn nonlinearities at each model layer. To alleviate the burden of having

to manually specify the distribution these nonlinear feature functions are drawn from, we

elected to infer them in a Bayesian sense. Specifically, we postulated that the sought posteriors

constitute multivariate Student’s-t densities. To allow for reaping the most out of the heavy

tails of Student’s-t densities, we performed variational Bayesian inference for our model under

a novel objective function construction. This was based on a t-divegence functional, which

better accommodates heavy-tailed densities, compared to the typically used KL divergence.

We exhaustively evaluated our approach using challenging benchmark datasets; we offered

thorough insights into its key performance characteristics. This way, we illustrated that

our proposed approach outperforms the existing alternatives in terms of predictive accuracy,

without undermining the overall computational scalability, both in terms of training time

and of prediction generation time. We also showed that data-driven inference of a posterior

distribution from which we can draw the employed banks of nonlinearities yields better results

than drawing from a simple prior.

One research direction that we have not considered in this work concerns the possibility of

imposing nonelliptical distributions on the postulated latent variables, which allow to account

for skewness in a fashion similar, e.g., to [54]. These opportunities remain to be explored in

our future research.

76

Chapter 6

Future Endeavors

As we have exhibited in this thesis, in many real world scenarios, we depend on mathematical

models to assist us in various challenging tasks. Machine learning advancements have made

possible to improve these models and in some cases even exceed human counterparts. A

question arises from this context: Can we derive a perfect model that can solve any real world

problem. From our perspective, a perfect model is achieved when it has the plasticity needed

to flexibly deal with uncertainty. Bayesian inference is a tool towards that specific goal. It

can efficiently counteract the epistemic uncertainty of the observable data. In this thesis, we

have explored diverse utilizations of Bayesian inference in model training. As we have shown,

our approach can indeed improve the performance of models in various tasks. Specifically,

this was effected by imposing Bayesian techniques on the three major components of deep

networks namely synaptic weights, latent units, and feature functions.

Machine learning, is a vibrant field of study that is constantly evolving and introduces new

techniques year by year. For instance, new frameworks are developed like the prominent

Generative adversarial networks, memory components like neural attention, and Q-learning

with deep networks for reinforcement learning. We believe that there is huge room for

significant breakthroughs in the field by means of Bayesian inference. In the following

sections, we will briefly present some open research areas that we are actively working on,

inspired by our research work described in the previous Chapters.

77

6.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is a new framework of estimating generative models

[183].

The process consists in pitting the generative model against an adversary, a discriminative

model. In this context, the generative models aim to capture the data distribution and produce

valid samples, while the discriminative model to correctly predict the origin of the sample. In

essence, if it is from the model distribution or from the data distribution. This framework has

shown impressive results in image and text generation [184, 185], disentangled representation

learning [186], and semi-supervised learning [187].

Given a dataset D = {x(i)} of observations, we want to train a deep network that can capture

the underlying distribution pdata(x). It is assumed that given a noise input z the generative

model will be cable of producing outputs G(z) of the same distribution as the given dataset.

While the discriminative model D will be able to distinguish the data origin; thus if the input

data x is from the data distribution, D(x) = 1 if x∼ pdata or the generator. The two models are

jointly trained by optimization of the criterion:

minGmaxDV (D,G) = Ex∼pdata[logD(x)]+Ez∼noise[log(1−D(G(z)))] (6.1)

There are a plethora of GAN variations such as DCGAN [185], Wassertein GANs [188], and

DCGAN ensembles [189]. A typical problem in GANs is that the training procedure can

lead to mode collapse, where the generator model just learns to generate a few samples that

the discriminator cannot distinguish. This characteristic of GANs is not favorable due to the

limitation that imposes in capturing the data distribution. Practitioners have derived variations

that aim to ameliorate this issue; These are considered analogous to regularizers for maximum

likelihood density estimation. In addition, there is an interest from the practitioners to treat

this issue by means of Bayesian inference [186, 190]. As was expected, Bayesian inference

has provided an increase in the GANs performance. Influenced by this, an improvement we

are currently working on, concerns the imposition of our innovative approach of Chapter 4,

AsyDGM [54], in the GAN context in order to capture skewed data dynamics.

78

6.2 Neural Attention

Modeling long and complex dependencies in sequential data is a daunting task in machine

learning. Models that try to capture the dependencies by compressing the sequence into fixed-

dimensional vector representations have shown success only for cases with short temporal

dependencies. To this end, various alternatives have been proposed by practitioners, to extend

the model’s temporal capacity with one of the most successful one being neural attention [191].

Neural attention, is a recent trend in deep networks and consists of a variable-length memory

component, that provides access to its content as needed. In order to be efficiently trainable,

the memory is implemented in a differential way. The mechanism has shown impressive

results in tasks such as neural machine translation [192, 193], question answering [194, 195],

image captioning [196], and document summarization [197].

Neural attention uses a memory bank to read and store information. This is achieved with the

assistance of addressing mechanisms that define the degree of importance of each memory state.

Typical formulation includes a similarity measure between the model’s feature representation

and the memory states. For instance, the cosine similarity is frequently used:

K[u,v] =
u · v

||u|| · ||v||
(6.2)

In this context, we consider imposing probability distributions at the latent units that produce

the feature representations and/or at the memory states. For the latter case, it is interesting to

observe how the model will react in different samples from the memory. This is analogous of

our intuitions in Chapter 5.

6.3 Deep Q-networks

Reinforcement learning is an alternative type of machine learning that uses a scalar reward

to train agents in order to make the correct actions in an environment. In essence, the model

(agent) learns an optimal policy by trial and error. In addition, the reward is typically sparse,

noisy, and delayed, which results in an increased degree of difficulty for the training algorithm.

Furthermore, the environment may be considered a partially observable Markov decision

process with the inputs being of a high dimensional nature. In such challenging tasks, deep

networks have shown great performance due to their informative feature representation of the

high dimensional input. Tasks such as games [198, 199, 200, 201, 202], robotics [203, 204]

79

and autonomous driving [205], are a few of various examples that deep networks have shown

improvements.

A prominent technique for reinforcement learning is Q-learning [206]. The technique learns

an action-value function Q which estimates the expected reward of taking a given action when

the agent is in a given state and following the optimal policy. To estimate the action-value

function, we use the Bellman equation as an iterative update. Thus, we have:

Qi+1(s,a) = E[r+ γmaxQi(s′,a′)|s,a] (6.3)

where s the state, a the action, r the reward, and γ a discount factor. Using a deep network to

learn the action-value function allows for greater performance but requires careful regulariza-

tion such as experience replay and freezing target networks. We believe that we can increase

the performance of these agents by imposing probability distributions at the deep Q-network

components. Specifically, Bayesian inference will tackle the uncertainty imposed by the noisy

and delayed reward, thus resulting to a more robust action-value function. This is similar in

spirit, with the Bayesian inference ideas we introduced in Chapter 3.

80

Bibliography

[1] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[2] Frank Rosenblatt. “The perceptron: A probabilistic model for information storage and

organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[3] David R Cox. “The regression analysis of binary sequences”. In: Journal of the Royal

Statistical Society. Series B (Methodological) (1958), pp. 215–242.

[4] Harry Zhang. “The optimality of naive Bayes”. In: AA 1.2 (2004), p. 3.

[5] Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. “Kernel regression for image

processing and reconstruction”. In: IEEE Transactions on image processing 16.2

(2007), pp. 349–366.

[6] Johan AK Suykens and Joos Vandewalle. “Least squares support vector machine

classifiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[7] Terrence S Furey et al. “Support vector machine classification and validation of cancer

tissue samples using microarray expression data”. In: Bioinformatics 16.10 (2000),

pp. 906–914.

[8] Simon Tong and Daphne Koller. “Support vector machine active learning with appli-

cations to text classification”. In: Journal of machine learning research 2.Nov (2001),

pp. 45–66.

[9] Charalambos Chrysostomou, Harris Partaourides, and Huseyin Seker. “Prediction of

Influenza A virus infections in humans using an Artificial Neural Network learning

approach”. In: Engineering in Medicine and Biology Society (EMBC), 2017 39th

Annual International Conference of the IEEE. IEEE. 2017, pp. 1186–1189.

[10] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A

review and new perspectives”. In: IEEE transactions on pattern analysis and machine

intelligence 35.8 (2013), pp. 1798–1828.

81

[11] Yoshua Bengio, Olivier Delalleau, and Nicolas L Roux. “The curse of highly variable

functions for local kernel machines”. In: Advances in neural information processing

systems. 2006, pp. 107–114.

[12] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[14] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:

Mathematics of Control, Signals, and Systems (MCSS) 2.4 (1989), pp. 303–314.

[15] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex”. In: The Journal of physiology 160.1

(1962), pp. 106–154.

[16] Daniel J Felleman and David C Van Essen. “Distributed hierarchical processing in

the primate cerebral cortex.” In: Cerebral cortex (New York, NY: 1991) 1.1 (1991),

pp. 1–47.

[17] Charles F Cadieu et al. “Deep neural networks rival the representation of primate

IT cortex for core visual object recognition”. In: PLoS computational biology 10.12

(2014), e1003963.

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature

521.7553 (2015), pp. 436–444.

[19] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional

networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[20] Fei-Fei Li, Rob Fergus, and Pietro Perona. “One-shot learning of object categories”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.4 (2006),

pp. 594–611.

[21] John Aldrich et al. “RA Fisher and the making of maximum likelihood 1912-1922”.

In: Statistical Science 12.3 (1997), pp. 162–176.

[22] Michael A Babyak. “What you see may not be what you get: a brief, nontechnical

introduction to overfitting in regression-type models”. In: Psychosomatic medicine

66.3 (2004), pp. 411–421.

82

[23] Igor V Tetko, David J Livingstone, and Alexander I Luik. “Neural network studies. 1.

Comparison of overfitting and overtraining”. In: Journal of chemical information and

computer sciences 35.5 (1995), pp. 826–833.

[24] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective.

Academic Press, 2015.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing

systems. 2012, pp. 1097–1105.

[26] Clement Farabet et al. “Learning hierarchical features for scene labeling”. In: IEEE

transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1915–1929.

[27] Jonathan J Tompson et al. “Joint training of a convolutional network and a graphical

model for human pose estimation”. In: Advances in neural information processing

systems. 2014, pp. 1799–1807.

[28] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[29] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep neural net-

works for image classification”. In: Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE. 2012, pp. 3642–3649.

[30] George E Dahl et al. “Context-dependent pre-trained deep neural networks for large-

vocabulary speech recognition”. In: IEEE Transactions on audio, speech, and language

processing 20.1 (2012), pp. 30–42.

[31] Tomáš Mikolov et al. “Strategies for training large scale neural network language

models”. In: Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE

Workshop on. IEEE. 2011, pp. 196–201.

[32] Geoffrey Hinton et al. “Deep neural networks for acoustic modeling in speech recogni-

tion: The shared views of four research groups”. In: IEEE Signal Processing Magazine

29.6 (2012), pp. 82–97.

[33] Tara N Sainath et al. “Deep convolutional neural networks for LVCSR”. In: Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on.

IEEE. 2013, pp. 8614–8618.

[34] Ronan Collobert et al. “Natural language processing (almost) from scratch”. In: Jour-

nal of Machine Learning Research 12.Aug (2011), pp. 2493–2537.

83

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with

neural networks”. In: Advances in neural information processing systems. 2014,

pp. 3104–3112.

[36] Auke Jan Ijspeert. “Central pattern generators for locomotion control in animals and

robots: a review”. In: Neural networks 21.4 (2008), pp. 642–653.

[37] Jun Tani, Masato Ito, and Yuuya Sugita. “Self-organization of distributedly represented

multiple behavior schemata in a mirror system: reviews of robot experiments using

RNNPB”. In: Neural Networks 17.8 (2004), pp. 1273–1289.

[38] Dean A Pomerleau. Neural network perception for mobile robot guidance. Vol. 239.

Springer Science & Business Media, 2012.

[39] Yoshua Bengio et al. “Greedy layer-wise training of deep networks”. In: Advances in

neural information processing systems. 2007, pp. 153–160.

[40] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. “Efficient learning of sparse

representations with an energy-based model”. In: Advances in neural information

processing systems. 2007, pp. 1137–1144.

[41] Pierre Sermanet et al. “Pedestrian detection with unsupervised multi-stage feature

learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2013, pp. 3626–3633.

[42] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of data

with neural networks”. In: science 313.5786 (2006), pp. 504–507.

[43] Martın Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[44] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:

Proceedings of the 22nd ACM international conference on Multimedia. ACM. 2014,

pp. 675–678.

[45] Ian J Goodfellow et al. “Pylearn2: a machine learning research library”. In: arXiv

preprint arXiv:1308.4214 (2013).

[46] Sander Dieleman et al. Lasagne: First release. Aug. 2015. DOI: 10.5281/zenodo.

27878. URL: http://dx.doi.org/10.5281/zenodo.27878.

[47] François Chollet et al. Keras. https://github.com/fchollet/keras.

2015.

84

https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
https://github.com/fchollet/keras

[48] Sébastien Jean et al. “On using very large target vocabulary for neural machine

translation”. In: arXiv preprint arXiv:1412.2007 (2014).

[49] Rajat Raina, Anand Madhavan, and Andrew Y Ng. “Large-scale deep unsupervised

learning using graphics processors”. In: Proceedings of the 26th annual international

conference on machine learning. ACM. 2009, pp. 873–880.

[50] Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. “Acoustic modeling

using deep belief networks”. In: IEEE Transactions on Audio, Speech, and Language

Processing 20.1 (2012), pp. 14–22.

[51] Harris Partaourides and Sotirios P Chatzis. “Deep Network Regularization via Bayesian

Inference of Synaptic Connectivity”. In: Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining. Springer. 2017, pp. 30–41.

[52] Li Wan et al. “Regularization of neural networks using dropconnect”. In: Proceedings

of the 30th international conference on machine learning (ICML-13). 2013, pp. 1058–

1066.

[53] Rajesh Ranganath, Sean Gerrish, and David Blei. “Black box variational inference”.

In: Artificial Intelligence and Statistics. 2014, pp. 814–822.

[54] Harris Partaourides and Sotirios P Chatzis. “Asymmetric deep generative models”. In:

Neurocomputing 241 (2017), pp. 90–96.

[55] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normaliz-

ing flows”. In: arXiv preprint arXiv:1505.05770 (2015).

[56] Harris Partaourides and Sotirios P. Chatzis. “Deep Learning with t-Exponential

Bayesian Kitchen Sinks”. In: Expert Systems with Applications. Vol. 98. May 2018.

[57] Ali Rahimi and Benjamin Recht. “Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning”. In: Advances in neural information

processing systems. 2009, pp. 1313–1320.

[58] Hrushikesh Narhar Mhaskar and Charles A Micchelli. “How to choose an activation

function”. In: Advances in Neural Information Processing Systems. 1994, pp. 319–326.

[59] Barry L Kalman and Stan C Kwasny. “Why tanh: choosing a sigmoidal function”.

In: Neural Networks, 1992. IJCNN., International Joint Conference on. Vol. 4. IEEE.

1992, pp. 578–581.

85

[60] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-

mann machines”. In: Proceedings of the 27th international conference on machine

learning (ICML-10). 2010, pp. 807–814.

[61] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial ac-

tivation function can approximate any function”. In: Neural networks 6.6 (1993),

pp. 861–867.

[62] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities improve

neural network acoustic models”. In: Proc. ICML. Vol. 30. 1. 2013.

[63] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance

on imagenet classification”. In: Proceedings of the IEEE international conference on

computer vision. 2015, pp. 1026–1034.

[64] Ian J Goodfellow et al. “Maxout networks”. In: arXiv preprint arXiv:1302.4389

(2013).

[65] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for

large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[66] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition

with deep recurrent neural networks”. In: Acoustics, speech and signal processing

(icassp), 2013 ieee international conference on. IEEE. 2013, pp. 6645–6649.

[67] Tomas Mikolov et al. “Recurrent neural network based language model.” In: Inter-

speech. Vol. 2. 2010, p. 3.

[68] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[69] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway networks”.

In: arXiv preprint arXiv:1505.00387 (2015).

[70] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[71] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. “Advances in

optimizing recurrent networks”. In: Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on. IEEE. 2013, pp. 8624–8628.

[72] Ilya Sutskever. “Training recurrent neural networks”. In: University of Toronto, Toronto,

Ont., Canada (2013).

86

[73] Yann A LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade.

Springer, 2012, pp. 9–48.

[74] Christian Darken, Joseph Chang, and John Moody. “Learning rate schedules for faster

stochastic gradient search”. In: Neural Networks for Signal Processing [1992] II.,

Proceedings of the 1992 IEEE-SP Workshop. IEEE. 1992, pp. 3–12.

[75] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:

Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[76] Robert Hecht-Nielsen et al. “Theory of the backpropagation neural network.” In:

Neural Networks 1.Supplement-1 (1988), pp. 445–448.

[77] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics. 2010, pp. 249–256.

[78] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv

preprint arXiv:1609.04747 (2016).

[79] Ning Qian. “On the momentum term in gradient descent learning algorithms”. In:

Neural networks 12.1 (1999), pp. 145–151.

[80] Yurii Nesterov. “A method of solving a convex programming problem with conver-

gence rate O (1/k2)”. In: Soviet Mathematics Doklady. Vol. 27. 2. 1983, pp. 372–

376.

[81] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online

learning and stochastic optimization”. In: Journal of Machine Learning Research

12.Jul (2011), pp. 2121–2159.

[82] Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv preprint

arXiv:1212.5701 (2012).

[83] Yann Dauphin, Harm de Vries, and Yoshua Bengio. “Equilibrated adaptive learning

rates for non-convex optimization”. In: Advances in neural information processing

systems. 2015, pp. 1504–1512.

[84] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).

[85] Ilya Sutskever et al. “On the importance of initialization and momentum in deep

learning”. In: International conference on machine learning. 2013, pp. 1139–1147.

87

[86] Arvind Neelakantan et al. “Adding gradient noise improves learning for very deep

networks”. In: arXiv preprint arXiv:1511.06807 (2015).

[87] Prabir Burman. “A comparative study of ordinary cross-validation, v-fold cross-

validation and the repeated learning-testing methods”. In: Biometrika 76.3 (1989),

pp. 503–514.

[88] Andrew Y Ng and Michael I Jordan. “On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes”. In: Advances in neural information

processing systems. 2002, pp. 841–848.

[89] Y Dan Rubinstein, Trevor Hastie, et al. “Discriminative vs Informative Learning.” In:

KDD. Vol. 5. 1997, pp. 49–53.

[90] Bradley Efron. “The efficiency of logistic regression compared to normal discriminant

analysis”. In: Journal of the American Statistical Association 70.352 (1975), pp. 892–

898.

[91] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks”. In: arXiv preprint

arXiv:1511.06434 (2015).

[92] Cristian Sminchisescu, Atul Kanaujia, and Dimitris Metaxas. “Conditional models for

contextual human motion recognition”. In: Computer Vision and Image Understanding

104.2 (2006), pp. 210–220.

[93] Graham W Taylor, Geoffrey E Hinton, and Sam T Roweis. “Modeling human motion

using binary latent variables”. In: Advances in neural information processing systems.

2007, pp. 1345–1352.

[94] Diederik P Kingma et al. “Semi-supervised learning with deep generative models”. In:

Advances in Neural Information Processing Systems. 2014, pp. 3581–3589.

[95] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. “Semi-supervised learning us-

ing gaussian fields and harmonic functions”. In: Proceedings of the 20th International

conference on Machine learning (ICML-03). 2003, pp. 912–919.

[96] Xiaojin Zhu. “Semi-supervised learning literature survey”. In: Computer Science,

University of Wisconsin-Madison 2.3 (2006), p. 4.

[97] Helmut Grabner, Christian Leistner, and Horst Bischof. “Semi-supervised on-line

boosting for robust tracking”. In: Computer Vision–ECCV 2008 (2008), pp. 234–247.

88

[98] Diederik P Kingma et al. “Semi-supervised learning with deep generative models”. In:

Advances in Neural Information Processing Systems. 2014, pp. 3581–3589.

[99] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm

for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[100] Paul Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. Tech. rep. 1986.

[101] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep boltzmann machines”. In: Artificial

Intelligence and Statistics. 2009, pp. 448–455.

[102] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from

overfitting.” In: Journal of machine learning research 15.1 (2014), pp. 1929–1958.

[103] David Duvenaud, Dougal Maclaurin, and Ryan Adams. “Early stopping as nonpara-

metric variational inference”. In: Artificial Intelligence and Statistics. 2016, pp. 1070–

1077.

[104] Mário Figueiredo. “Adaptive sparseness using Jeffreys prior”. In: Advances in neural

information processing systems. 2002, pp. 697–704.

[105] Andrew Gelman et al. “A weakly informative default prior distribution for logistic and

other regression models”. In: The Annals of Applied Statistics (2008), pp. 1360–1383.

[106] Mário AT Figueiredo. “Adaptive sparseness for supervised learning”. In: IEEE trans-

actions on pattern analysis and machine intelligence 25.9 (2003), pp. 1150–1159.

[107] Ata Kabán. “On Bayesian classification with Laplace priors”. In: Pattern Recognition

Letters 28.10 (2007), pp. 1271–1282.

[108] Jason Rennie. “On l2-norm regularization and the gaussian prior”. In: (2003).

[109] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation: Insights

and applications”. In: Deep Learning Workshop, ICML. 2015.

[110] Amr Ahmed and Eric P Xing. “Seeking the truly correlated topic posterior-on tight

approximate inference of logistic-normal admixture model”. In: Artificial Intelligence

and Statistics. 2007, pp. 19–26.

[111] Mohammad E Khan et al. “Variational bounds for mixed-data factor analysis”. In:

Advances in Neural Information Processing Systems. 2010, pp. 1108–1116.

[112] Antti Honkela and Harri Valpola. “Unsupervised variational Bayesian learning of

nonlinear models”. In: Advances in neural information processing systems. 2005,

pp. 593–600.

89

[113] TS Jaakkola and MI Jordan. “Bayesian logistic regression: a variational approach”.

In: Proceedings of the 1997 Conference on Artificial Intelligence and Statistics, Ft.

Lauderdale, FL. 1997.

[114] Michael Braun and Jon McAuliffe. “Variational inference for large-scale models of

discrete choice”. In: Journal of the American Statistical Association 105.489 (2010),

pp. 324–335.

[115] Joshua Clinton, Simon Jackman, and Douglas Rivers. “The statistical analysis of roll

call data”. In: American Political Science Review 98.2 (2004), pp. 355–370.

[116] David M Blei and John D Lafferty. “Dynamic topic models”. In: Proceedings of the

23rd international conference on Machine learning. ACM. 2006, pp. 113–120.

[117] Chong Wang and David M Blei. “Variational inference in nonconjugate models”. In:

Journal of Machine Learning Research 14.Apr (2013), pp. 1005–1031.

[118] Alan E Gelfand and Adrian FM Smith. “Sampling-based approaches to calculating

marginal densities”. In: Journal of the American statistical association 85.410 (1990),

pp. 398–409.

[119] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images”. In: IEEE Transactions on pattern analysis and

machine intelligence 6 (1984), pp. 721–741.

[120] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte

Carlo in practice. CRC press, 1995.

[121] Nicholas Metropolis et al. “Equation of state calculations by fast computing machines”.

In: The journal of chemical physics 21.6 (1953), pp. 1087–1092.

[122] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and their

applications”. In: Biometrika 57.1 (1970), pp. 97–109.

[123] Pierre Baldi and Peter J Sadowski. “Understanding dropout”. In: Advances in Neural

Information Processing Systems. 2013, pp. 2814–2822.

[124] Tommi S Jaakkola and Michael I Jordan. “Bayesian parameter estimation via varia-

tional methods”. In: Statistics and Computing 10.1 (2000), pp. 25–37.

[125] Peter W Glynn. “Likelihood ratio gradient estimation for stochastic systems”. In:

Communications of the ACM 33.10 (1990), pp. 75–84.

[126] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

90

[127] Yoshua Bengio et al. “Generalized denoising auto-encoders as generative models”. In:

Advances in Neural Information Processing Systems. 2013, pp. 899–907.

[128] Frédéric Bastien et al. “Theano: new features and speed improvements”. In: arXiv

preprint arXiv:1211.5590 (2012).

[129] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv

preprint arXiv:1312.6114 (2013).

[130] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic back-

propagation and approximate inference in deep generative models”. In: arXiv preprint

arXiv:1401.4082 (2014).

[131] Richard E Turner and Maneesh Sahani. “Two problems with variational expecta-

tion maximisation for time-series models”. In: Bayesian Time series models (2011),

pp. 115–138.

[132] Lars Maaløe et al. “Auxiliary Deep Generative Models”. In: 33rd International Con-

ference on Machine Learning (ICML 2016). 2016.

[133] Adelchi Azzalini and A Dalla Valle. “The multivariate skew-normal distribution”. In:

Biometrika 83.4 (1996), pp. 715–726.

[134] Sujit K Sahu, Dipak K Dey, and Márcia D Branco. “A new class of multivariate skew

distributions with applications to Bayesian regression models”. In: Canadian Journal

of Statistics 31.2 (2003), pp. 129–150.

[135] Tsung I Lin. “Maximum likelihood estimation for multivariate skew normal mixture

models”. In: Journal of Multivariate Analysis 100.2 (2009), pp. 257–265.

[136] Tsung I Lin, Jack C Lee, and Shu Y Yen. “Finite mixture modelling using the skew

normal distribution”. In: Statistica Sinica (2007), pp. 909–927.

[137] Saumyadipta Pyne et al. “Automated high-dimensional flow cytometric data analysis”.

In: Proceedings of the National Academy of Sciences 106.21 (2009), pp. 8519–8524.

[138] Sharon X Lee and Geoffrey J Mclachlan. “On mixtures of skew normal and skew

t-distributions”. In: Advances in Data Analysis and Classification 7.3 (2013), pp. 241–

266.

[139] Sharon Lee and Geoffrey J McLachlan. “Finite mixtures of multivariate skew t-

distributions: some recent and new results”. In: Statistics and Computing 24.2 (2014),

pp. 181–202.

91

[140] Brian C Franczak et al. “Parsimonious shifted asymmetric Laplace mixtures”. In:

arXiv preprint arXiv:1311.0317 (2013).

[141] Cristina Tortora, Paul D McNicholas, and Ryan P Browne. “A mixture of generalized

hyperbolic factor analyzers”. In: Advances in Data Analysis and Classification 10.4

(2016), pp. 423–440.

[142] Angela Montanari and Cinzia Viroli. “A skew-normal factor model for the analysis of

student satisfaction towards university courses”. In: Journal of Applied Statistics 37.3

(2010), pp. 473–487.

[143] Tsung-I Lin, Geoffrey J McLachlan, and Sharon X Lee. “Extending mixtures of factor

models using the restricted multivariate skew-normal distribution”. In: Journal of

Multivariate Analysis 143 (2016), pp. 398–413.

[144] John Paisley, David Blei, and Michael Jordan. “Variational Bayesian inference with

stochastic search”. In: arXiv preprint arXiv:1206.6430 (2012).

[145] Felix V Agakov and David Barber. “An auxiliary variational method”. In: International

Conference on Neural Information Processing. Springer. 2004, pp. 561–566.

[146] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the best multi-stage ar-

chitecture for object recognition?” In: Computer Vision, 2009 IEEE 12th International

Conference on. IEEE. 2009, pp. 2146–2153.

[147] Takeru Miyato et al. “Distributional smoothing with virtual adversarial training”. In:

arXiv preprint arXiv:1507.00677 (2015).

[148] Athanasios Voulodimos et al. “A threefold dataset for activity and workflow recogni-

tion in complex industrial environments”. In: IEEE MultiMedia 19.3 (2012), pp. 42–

52.

[149] Dimitrios Kosmopoulos and Sotirios P Chatzis. “Robust visual behavior recognition”.

In: IEEE Signal Processing Magazine 27.5 (2010), pp. 34–45.

[150] Sang Min Oh et al. “Learning and inferring motion patterns using parametric segmental

switching linear dynamic systems”. In: International Journal of Computer Vision 77.1

(2008), pp. 103–124.

[151] Thierry Bertin-Mahieux et al. “The Million Song Dataset.” In: Ismir. Vol. 2. 9. 2011,

p. 10.

[152] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

92

[153] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with

neural networks”. In: Advances in neural information processing systems. 2014,

pp. 3104–3112.

[154] David Silver et al. “Mastering the game of Go with deep neural networks and tree

search”. In: Nature 529.7587 (2016), pp. 484–489.

[155] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science

& Business Media, 2012.

[156] Andreas Damianou and Neil Lawrence. “Deep gaussian processes”. In: Artificial

Intelligence and Statistics. 2013, pp. 207–215.

[157] Thang Bui et al. “Deep gaussian processes for regression using approximate expecta-

tion propagation”. In: International Conference on Machine Learning. 2016, pp. 1472–

1481.

[158] Thang D Bui et al. “Training deep Gaussian processes using stochastic expectation

propagation and probabilistic backpropagation”. In: arXiv preprint arXiv:1511.03405

(2015).

[159] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory. Vol. 1.

Wiley New York, 1998.

[160] Robert E Schapire. “The boosting approach to machine learning: An overview”. In:

Nonlinear estimation and classification. Springer, 2003, pp. 149–171.

[161] Ali Rahimi and Benjamin Recht. “Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning”. In: Advances in neural information

processing systems. 2009, pp. 1313–1320.

[162] Quoc Le, Tamás Sarlós, and Alex Smola. “Fastfood-approximating kernel expansions

in loglinear time”. In: Proceedings of the international conference on machine learning.

Vol. 85. 2013.

[163] Zichao Yang et al. “A la carte–learning fast kernels”. In: Artificial Intelligence and

Statistics. 2015, pp. 1098–1106.

[164] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, exponential families,

and variational inference”. In: Foundations and Trends® in Machine Learning 1.1–2

(2008), pp. 1–305.

[165] Constantino Tsallis. “Possible generalization of Boltzmann-Gibbs statistics”. In: Jour-

nal of statistical physics 52.1 (1988), pp. 479–487.

93

[166] AndréM C de Souza and Constantino Tsallis. “Student’s t-and r-distributions: Unified

derivation from an entropic variational principle”. In: Physica A: Statistical Mechanics

and its Applications 236.1-2 (1997), pp. 52–57.

[167] Constantino Tsallis, RenioS Mendes, and Anel R Plastino. “The role of constraints

within generalized nonextensive statistics”. In: Physica A: Statistical Mechanics and

its Applications 261.3 (1998), pp. 534–554.

[168] Jan Naudts. “Deformed exponentials and logarithms in generalized thermostatistics”.

In: Physica A: Statistical Mechanics and its Applications 316.1 (2002), pp. 323–334.

[169] Jan Naudts. “Estimators, escort probabilities, and phi-exponential families in statistical

physics”. In: J. Ineq. Pure Appl. Math 5.4 (2004), p. 102.

[170] Jan Naudts. “Generalized thermostatistics based on deformed exponential and loga-

rithmic functions”. In: Physica A: Statistical Mechanics and its Applications 340.1

(2004), pp. 32–40.

[171] Geoffrey McLachlan and David Peel. Finite mixture models. John Wiley & Sons,

2004.

[172] Nan Ding, Yuan Qi, and Svn Vishwanathan. “t-divergence based approximate in-

ference”. In: Advances in Neural Information Processing Systems. 2011, pp. 1494–

1502.

[173] Chuanhai Liu and Donald B Rubin. “ML estimation of the t distribution using EM

and its extensions, ECM and ECME”. In: Statistica Sinica (1995), pp. 19–39.

[174] Sotirios P Chatzis and Dimitrios I Kosmopoulos. “A variational Bayesian methodology

for hidden Markov models utilizing Student’s-t mixtures”. In: Pattern Recognition

44.2 (2011), pp. 295–306.

[175] Sotirios P Chatzis, Dimitrios I Kosmopoulos, and Theodora A Varvarigou. “Robust

sequential data modeling using an outlier tolerant hidden Markov model”. In: IEEE

transactions on pattern analysis and machine intelligence 31.9 (2009), pp. 1657–1669.

[176] Markus Svensén and Christopher M Bishop. “Robust Bayesian mixture modelling”.

In: Neurocomputing 64 (2005), pp. 235–252.

[177] Nan Ding, Yuan Qi, and Svn Vishwanathan. “t-divergence based approximate in-

ference”. In: Advances in Neural Information Processing Systems. 2011, pp. 1494–

1502.

[178] Arthur Asuncion and David Newman. UCI machine learning repository. 2007.

94

[179] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. “Training invariant support vector

machines using selective sampling”. In: Large scale kernel machines (2007), pp. 301–

320.

[180] Kurt Cutajar et al. “Random Feature Expansions for Deep Gaussian Processes”. In:

International Conference on Machine Learning. 2017, pp. 884–893.

[181] Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

[182] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-

mann machines”. In: Proceedings of the 27th international conference on machine

learning (ICML-10). 2010, pp. 807–814.

[183] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information

processing systems. 2014, pp. 2672–2680.

[184] Xiaodan Liang et al. “Recurrent Topic-Transition GAN for Visual Paragraph Genera-

tion”. In: arXiv preprint arXiv:1703.07022 (2017).

[185] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks”. In: arXiv preprint

arXiv:1511.06434 (2015).

[186] Xi Chen et al. “Infogan: Interpretable representation learning by information maxi-

mizing generative adversarial nets”. In: Advances in Neural Information Processing

Systems. 2016, pp. 2172–2180.

[187] Tim Salimans et al. “Improved techniques for training gans”. In: Advances in Neural

Information Processing Systems. 2016, pp. 2234–2242.

[188] Ishaan Gulrajani et al. “Improved training of wasserstein gans”. In: arXiv preprint

arXiv:1704.00028 (2017).

[189] Yaxing Wang, Lichao Zhang, and Joost van de Weijer. “Ensembles of generative

adversarial networks”. In: arXiv preprint arXiv:1612.00991 (2016).

[190] Yunus Saatchi and Andrew Gordon Wilson. “Bayesian GAN”. In: arXiv preprint

arXiv:1705.09558 (2017).

[191] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural turing machines”. In: arXiv

preprint arXiv:1410.5401 (2014).

[192] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation

by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

95

[193] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches

to attention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025

(2015).

[194] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. “End-to-end memory net-

works”. In: Advances in neural information processing systems. 2015, pp. 2440–2448.

[195] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory networks”. In: arXiv

preprint arXiv:1410.3916 (2014).

[196] Kelvin Xu et al. “Show, attend and tell: Neural image caption generation with visual

attention”. In: International Conference on Machine Learning. 2015, pp. 2048–2057.

[197] Alexander M Rush, Sumit Chopra, and Jason Weston. “A neural attention model for

abstractive sentence summarization”. In: arXiv preprint arXiv:1509.00685 (2015).

[198] David Silver et al. “Mastering the game of Go with deep neural networks and tree

search”. In: Nature 529.7587 (2016), pp. 484–489.

[199] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv

preprint arXiv:1312.5602 (2013).

[200] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.

In: Nature 518.7540 (2015), pp. 529–533.

[201] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning

with Double Q-Learning.” In: AAAI. 2016, pp. 2094–2100.

[202] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:

International Conference on Machine Learning. 2016, pp. 1928–1937.

[203] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:

arXiv preprint arXiv:1509.02971 (2015).

[204] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with asyn-

chronous off-policy updates”. In: Robotics and Automation (ICRA), 2017 IEEE Inter-

national Conference on. IEEE. 2017, pp. 3389–3396.

[205] Ahmad EL Sallab et al. “Deep reinforcement learning framework for autonomous

driving”. In: Electronic Imaging 2017.19 (2017), pp. 70–76.

[206] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3-4

(1992), pp. 279–292.

96

APPENDIX I

Here we will present parts of the code used for the experiments. For Chapter 3, the code was

adapted from Lasagne’s examples. The original code can be found at

https://github.com/Lasagne/Lasagne. Following are examples of the networks used:

def Plain(input_var=None):

l_hid = list()

network = lasagne.layers.InputLayer(shape=(None, 3, 32, 32),

input_var=input_var)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=64, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

97

stride=2)

network = lasagne.layers.DenseLayer(

network,

num_units=512,

nonlinearity=lasagne.nonlinearities.rectify,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.DenseLayer(

network,

num_units=100,

nonlinearity=lasagne.nonlinearities.softmax)

l_hid.append(network)

return l_hid, network

def Dropout(input_var=None):

l_hid = list()

network = lasagne.layers.InputLayer(shape=(None, 3, 32, 32),

input_var=input_var)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=64, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

98

network = lasagne.layers.DenseLayer(

lasagne.layers.dropout(network, p=.5),

num_units=512,

nonlinearity=lasagne.nonlinearities.rectify,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.DenseLayer(

network,

num_units=100,

nonlinearity=lasagne.nonlinearities.softmax)

l_hid.append(network)

return l_hid, network

def DropConnect(input_var=None):

l_hid = list()

network = lasagne.layers.InputLayer(shape=(None, 3, 32, 32),

input_var=input_var)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=64, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.WeightDecayLayer(

99

network,

num_units=512,

nonlinearity=lasagne.nonlinearities.rectify,

Wmean=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.DenseLayer(

network,

num_units=100,

nonlinearity=lasagne.nonlinearities.softmax)

l_hid.append(network)

return l_hid, network

def DropConnectPlus(input_var=None):

l_hid = list()

input_data = lasagne.layers.InputLayer(shape=(None, 3, 32, 32),

input_var=input_var)

network = lasagne.layers.Conv2DLayer(

input_data, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=32, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.Conv2DLayer(

network, num_filters=64, filter_size=(5, 5),

nonlinearity=lasagne.nonlinearities.rectify,

pad=2,stride=1,

W=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(3, 3),

stride=2)

network = lasagne.layers.DenseIBPLayer(

network,

100

num_units=512,

nonlinearity=lasagne.nonlinearities.rectify,

Wmean=lasagne.init.GlorotUniform())

l_hid.append(network)

network = lasagne.layers.DenseLayer(

network,

num_units=100,

nonlinearity=lasagne.nonlinearities.softmax)

l_hid.append(network)

return l_hid, network

Next, we present the implemented layers that do not exist in the Lasagne framework:

class DenseIBPLayer(Layer):

def __init__(self, incoming, num_units, Wmean=init.GlorotUniform(),

Wmask=init.GlorotUniform(),

b=init.Constant(0.), nonlinearity=nonlinearities.rectify,

**kwargs):

super(DenseIBPLayer, self).__init__(incoming, **kwargs)

self.nonlinearity = (nonlinearities.identity if nonlinearity is None

else nonlinearity)

self.num_units = num_units

self._srng = RandomStreams(get_rng().randint(1, 2147462579))

num_inputs = int(np.prod(self.input_shape[1:]))

self.Wmean = self.add_param(Wmean, (num_inputs, num_units),

name="Wmean")

self.Wmask = self.add_param(Wmask, (num_inputs, num_units),

name="Wmask")

self.Wmask = T.nnet.sigmoid(self.Wmask)

self.betatilde = self.add_param(init.Constant(1.),

(num_inputs,num_units),

name="betatilde")

self.betahat = self.add_param(init.Constant(1.),

(num_inputs,num_units),

name="betahat")

self.rsn = RandomStreams(seed=234)

if b is None:

self.b = None

else:

self.b = self.add_param(b, (num_units,), name="b",

regularizable=False)

101

def get_output_shape_for(self, input_shape):

return (input_shape[0], self.num_units)

def get_output_for(self, input, deterministic=False,**kwargs):

if input.ndim > 2:

if the input has more than two dimensions, flatten it

into a batch of feature vectors.

input = input.flatten(2)

num_inputs = int(np.prod(self.input_shape[1:]))

if deterministic:

num_inputs = int(np.prod(self.input_shape[1:]))

activation = T.dot(input, self.Wmean*self.Wmask)

if self.b is not None:

activation = activation + self.b.dimshuffle('x', 0)

return self.nonlinearity(activation)

else:

num_inputs = int(np.prod(self.input_shape[1:]))

self.W = self.Wmean *

(self.Wmask > self.rsn.uniform(size=(num_inputs,

int(self.num_units))))

activation = T.dot(input, self.W)

if self.b is not None:

activation = activation + self.b.dimshuffle('x', 0)

return self.nonlinearity(activation)

class WeightDecayLayer(Layer):

def __init__(self, incoming, num_units, Wmean=init.GlorotUniform(),

Decay=0.5, b=init.Constant(0.),

nonlinearity=nonlinearities.rectify, **kwargs):

super(WeightDecayLayer, self).__init__(incoming, **kwargs)

self.nonlinearity = (nonlinearities.identity if nonlinearity is None

else nonlinearity)

self.num_units = num_units

self._srng = RandomStreams(get_rng().randint(1, 2147462579))

num_inputs = int(np.prod(self.input_shape[1:]))

self.Wmean = self.add_param(Wmean, (num_inputs, num_units),

name="Wmean")

self.Decay = Decay

self._srng = RandomStreams(get_rng().randint(1, 2147462579))

self.rsn = RandomStreams(seed=234)

if b is None:

102

self.b = None

else:

self.b = self.add_param(b, (num_units,), name="b",

regularizable=False)

def get_output_shape_for(self, input_shape):

return (input_shape[0], self.num_units)

def get_output_for(self, input, deterministic=False,**kwargs):

if input.ndim > 2:

if the input has more than two dimensions, flatten it

into a batch of feature vectors.

input = input.flatten(2)

num_inputs = int(np.prod(self.input_shape[1:]))

if deterministic:

one = T.constant(1)

retain_prob = self.Decay

num_inputs = int(np.prod(self.input_shape[1:]))

activation = T.dot(input, self.Wmean*retain_prob)

if self.b is not None:

activation = activation + self.b.dimshuffle('x', 0)

return self.nonlinearity(activation)

else:

one = T.constant(1)

retain_prob = self.Decay

self.W = self.Wmean *

(self._srng.binomial(size=(num_inputs,

int(self.num_units)),

p=retain_prob,

dtype=input.dtype))

activation = T.dot(input, self.W)

if self.b is not None:

activation = activation + self.b.dimshuffle('x', 0)

return self.nonlinearity(activation)

Finally, the loss functions for the training procedure:

loss function for Plain, Dropout and DropConnect networks

prediction = lasagne.layers.get_output(network)

loss = lasagne.objectives.categorical_crossentropy(prediction,

target_var)

103

loss = loss.mean()

loss function for DropConnect++ network

prediction = lasagne.layers.get_output(network)

loss = lasagne.objectives.categorical_crossentropy(prediction,

target_var)

loss = loss.mean()

psi1 = T.psi(l_hid[3].betatilde) - T.psi(l_hid[3].betatilde + \

l_hid[3].betahat)

psi2 = T.psi(l_hid[3].betahat) - T.psi(l_hid[3].betatilde + \

l_hid[3].betahat)

gamma = T.gammaln(l_hid[3].betatilde+l_hid[3].betahat) - \

T.gammaln(l_hid[3].betatilde) - T.gammaln(l_hid[3].betahat)

loss2 = loss + T.sum((l_hid[3].betatilde-1)*psi1 \

+ (l_hid[3].betahat-1)*psi2) + T.sum(gamma) \

+ T.sum(l_hid[3].Wmask*T.log(l_hid[3].Wmask) \

+ (1-l_hid[3].Wmask*T.log(1-l_hid[3].Wmask))) \

- T.sum(l_hid[3].Wmask*psi1 \

+ (1 - l_hid[3].Wmask)*psi2) \

- T.sum(T.log(l_hid[3].Wmask))

For Chapter 5, the code was adapted from [180] paper’s source code. The original code can be

found at https://github.com/mauriziofilippone/deep gp random features. First, we created a

bash shell script to automate the process.

for dataset in Concrete_Data Boston_Housing winequality-white

yacht_hydrodynamics kin8nm Naval energy CCPP

YearPrediction

do

for model_c in 'DtBKS' 'RKS' 'DGP_rbf' 'DGP_arcosine1'

do

for nl in 2 3 4

do

for n_rff in 100

do

for df in 5

do

for seed in 1872583848 794921487 111352301 2360782358 1869695442

2081981515 1805465960 1376693511 1418777250 663257521

878959199 3001592395 2659748565 515183663 1287007039

104

2083814687 1146014426 2717587860 2667749500 3514257012

do

python dgp_rff_regression.py --seed=$seed --model_c=$model_c

--dataset=$dataset --nl=$nl

--n_rff=$n_rff --df=$df

#--learn_Omega=no

#--kernel_type=arccosine

--kernel_arccosine_degree=1

#--normalize_=FALSE

done

done

done

done

done

done

Next, we present the dataset import and the main program:

def import_dataset(dataset, fold, normalize=True):

file = 'datasets/' + dataset + '.csv'

dataset_ = np.loadtxt(file,delimiter=',')

if dataset == 'YearPrediction':

dataset_ = (dataset_ - dataset_.mean(axis=0)) \

/ dataset_.std(axis=0)

train_X = dataset_[:463715,1:]

train_Y = dataset_[:463715,0]

train_Y = np.reshape(train_Y, (-1, 1))

test_X = dataset_[-51630:,1:]

test_Y = dataset_[-51630:,0]

test_Y = np.reshape(test_Y, (-1, 1))

else:

_num_examples = dataset_.shape[0]

perm = np.arange(_num_examples)

np.random.shuffle(perm)

if dataset == 'Naval' or dataset == 'energy':

n_outputs = 2

else:

n_outputs = 1

if n_outputs > 1 :

X = dataset[perm,:-n_outputs]

Y = dataset[perm,-n_outputs:]

105

else:

X = dataset[perm,:-1]

Y = dataset[perm,-1]

if dataset != 'protein':

_X = (_X - _X.mean(axis=0)) / _X.std(axis=0)

if normalize:

_Y = (_Y - _Y.mean(axis=0)) / _Y.std(axis=0)

test_size = int(_num_examples*0.1)

train_X = _X[:-test_size,:]

if n_outputs > 1 :

train_Y = _Y[:-test_size,:]

else:

train_Y = _Y[:-test_size]

train_Y = np.reshape(train_Y, (-1, 1))

test_X = _X[-test_size:,:]

if n_outputs > 1 :

test_Y = _Y[-test_size:,:]

else:

test_Y = _Y[-test_size:]

test_Y = np.reshape(test_Y, (-1, 1))

data = DataSet(train_X, train_Y)

test = DataSet(test_X, test_Y)

return data, test

if __name__ == '__main__':

FLAGS = utils.get_flags()

Set random seed for tensorflow and numpy operations

tf.set_random_seed(FLAGS.seed)

np.random.seed(FLAGS.seed)

data, test = import_dataset(FLAGS.dataset,

FLAGS.fold,

FLAGS.normalize_)

Here we define a custom loss for dgp to show

error_rate = losses.RootMeanSqError(data.Dout)

Likelihood

like = likelihoods.Gaussian()

Optimizer

optimizer = utils.get_optimizer(FLAGS.optimizer,

FLAGS.learning_rate)

mc_samples = FLAGS.n_rff

Main dgp object

106

if FLAGS.model_c == 'DGP_rbf':

dgp = DgpRff(like, data.num_examples, data.X.shape[1],

data.Y.shape[1], FLAGS.nl, FLAGS.n_rff,

FLAGS.df, 'RBF', FLAGS.kernel_arccosine_degree,

FLAGS.is_ard, FLAGS.feed_forward, 1000, 4000,

FLAGS.learn_Omega)

if FLAGS.model_c == 'DGP_arcosine1':

dgp = DgpRff(like, data.num_examples, data.X.shape[1],

data.Y.shape[1], FLAGS.nl, FLAGS.n_rff, FLAGS.df,

'arccosine', 1, FLAGS.is_ard, FLAGS.feed_forward,

1000, 4000, FLAGS.learn_Omega)

if FLAGS.model_c == 'DtBKS':

dgp = DtBKS(like, data.num_examples, data.X.shape[1],

data.Y.shape[1], FLAGS.nl, FLAGS.n_rff,

FLAGS.df, FLAGS.kernel_type,

FLAGS.kernel_arccosine_degree,

FLAGS.is_ard, FLAGS.feed_forward, 0,

100000, FLAGS.learn_Omega)

if FLAGS.model_c == 'RKS':

dgp = DtBKS(like, data.num_examples, data.X.shape[1],

data.Y.shape[1], FLAGS.nl, FLAGS.n_rff,

FLAGS.df, FLAGS.kernel_type,

FLAGS.kernel_arccosine_degree, FLAGS.is_ard,

FLAGS.feed_forward, 0, 100000, 'no')

Learning

minimum, iter_ = dgp.learn(data, FLAGS.learning_rate, mc_samples,

FLAGS.batch_size, FLAGS.n_iterations,

optimizer, FLAGS.display_step, test,

mc_samples, error_rate, FLAGS.duration,

FLAGS.less_prints)

name = 'results_' + FLAGS.model_c + '_' + FLAGS.dataset + '_nl=' \

+ str(FLAGS.nl) + '_n_rff=' + str(FLAGS.n_rff) \

+ '_df=' + str(FLAGS.df) + '.txt'

f = open(name, 'a')

writer = csv.writer(f, delimiter='\t')

writer.writerow([FLAGS.seed, minimum, iter_])

f.close()

Finally, the changes implemented at DgpRff model in order to use our DtBKS model.

class DtBKS(object):

107

def __init__(self, likelihood_fun, num_examples, d_in, d_out,

n_layers, n_rff, df, kernel_type,

kernel_arccosine_degree, is_ard, feed_forward,

q_Omega_fixed, theta_fixed, learn_Omega):

self.likelihood = likelihood_fun

self.kernel_type = kernel_type

self.is_ard = is_ard

self.feed_forward = feed_forward

self.q_Omega_fixed = q_Omega_fixed

self.theta_fixed = theta_fixed

self.q_Omega_fixed_flag = q_Omega_fixed > 0

self.theta_fixed_flag = theta_fixed > 0

self.learn_Omega = learn_Omega

self.arccosine_degree = kernel_arccosine_degree

These are all scalars

self.num_examples = num_examples

self.nl = n_layers ## Number of hidden layers

self.n_Omega = n_layers

Number of weigh matrices is "Number of hidden layers"

self.n_W = n_layers

These are arrays to allow flexibility in the future

self.n_rff = n_rff * np.ones(n_layers, dtype = np.int64)

self.df = df * np.ones(n_layers, dtype=np.int64)

Dimensionality of Omega matrices

if self.feed_forward:

self.d_in = np.concatenate([[d_in],

self.df[:(n_layers - 1)] + d_in])

else:

self.d_in = np.concatenate([[d_in],

self.df[:(n_layers - 1)]])

self.d_out = self.n_rff

Dimensionality of W matrices

if self.kernel_type == "RBF":

self.dhat_in = self.n_rff * 2

self.dhat_out = np.concatenate([self.df[:-1], [d_out]])

if self.kernel_type == "arccosine":

self.dhat_in = self.n_rff

self.dhat_out = np.concatenate([self.df[:-1], [d_out]])

When Omega is learned variationally, define the right

KL function and the way Omega are constructed

if self.learn_Omega == "var":

self.get_kl = self.get_kl_Omega_to_learn

108

self.sample_from_Omega = self.sample_from_Omega_to_learn

When Omega is optimized, fix some standard normals

throughout the execution that will be used to construct Omega

if self.learn_Omega == "optim":

self.get_kl = self.get_kl_Omega_to_learn

self.sample_from_Omega = self.sample_from_Omega_optim

self.z_for_Omega_fixed = []

for i in range(self.n_Omega):

tmp = utils.get_normal_samples(1, self.d_in[i],

self.d_out[i])

self.z_for_Omega_fixed.append(tf.Variable(tmp[0,:,:],

trainable = False))

When Omega is fixed, fix some standard normals

throughout the execution that will be used to construct Omega

if self.learn_Omega == "no":

self.get_kl = self.get_kl_Omega_fixed

self.sample_from_Omega = self.sample_from_Omega_fixed

self.z_for_Omega_fixed = []

for i in range(self.n_Omega):

tmp = utils.get_normal_samples(1, self.d_in[i],

self.d_out[i])

self.z_for_Omega_fixed.append(tf.Variable(tmp[0,:,:],

trainable = False))

Parameters defining prior over Omega

self.log_theta_sigma2 = tf.Variable(tf.zeros([n_layers]),

name="log_theta_sigma2")

if self.is_ard:

self.llscale0 = []

for i in range(self.nl):

self.llscale0.append(tf.constant(0.5 \

* np.log(self.d_in[i]), tf.float32))

else:

self.llscale0 = tf.constant(0.5 * np.log(self.d_in),

tf.float32)

if self.is_ard:

self.log_theta_lengthscale = []

for i in range(self.nl):

self.log_theta_lengthscale.append(tf.Variable(\

tf.mul(tf.ones([self.d_in[i]]), self.llscale0[i]),

name="log_theta_lengthscale"))

else:

self.log_theta_lengthscale = tf.Variable(self.llscale0,

109

name="log_theta_lengthscale")

self.prior_mean_Omega, self.log_prior_var_Omega,

self.log_prior_nu_Omega = self.get_prior_Omega(\

self.log_theta_lengthscale)

Set the prior over weights

self.prior_mean_W, self.log_prior_var_W,

self.log_prior_nu_W = self.get_prior_W()

Initialize posterior parameters

if self.learn_Omega == "var":

self.mean_Omega, self.log_var_Omega,

self.log_nu_Omega = self.init_posterior_Omega()

elif self.learn_Omega == "optim":

self.mean_Omega, self.log_var_Omega,

self.log_nu_Omega = self.init_posterior_Omega()

else:

self.mean_Omega, self.log_var_Omega,

self.log_nu_Omega = self.get_prior_Omega([-1/2] * self.nl)

self.mean_W, self.log_var_W,

self.log_nu_W = self.init_posterior_W()

Set the number of Monte Carlo samples as a placeholder

so that it can be different for training and test

self.mc = tf.placeholder(tf.int32)

Batch data placeholders

Din = d_in

Dout = d_out

self.X = tf.placeholder(tf.float32, [None, Din])

self.Y = tf.placeholder(tf.float32, [None, Dout])

Builds whole computational graph with relevant

quantities as part of the class

self.loss, self.kl, self.ell, self.layer_out = self.get_nelbo()

config = tf.ConfigProto()

config.gpu_options.allow_growth=True

Initialize the session

self.session = tf.Session(config=config)

Definition of a prior for Omega - which depends on the

lengthscale of the covariance function

def get_prior_Omega(self, log_lengthscale):

if self.is_ard:

prior_mean_Omega = []

log_prior_var_Omega = []

log_prior_nu_Omega = []

110

for i in range(self.nl):

prior_mean_Omega.append(tf.zeros([self.d_in[i],1]))

for i in range(self.nl):

log_prior_var_Omega.append(-2 * log_lengthscale[i])

for i in range(self.nl):

log_prior_nu_Omega.append(np.log(2.1) \

* tf.ones([self.d_in[i],1]))

else:

prior_mean_Omega = tf.zeros(self.nl)

log_prior_var_Omega = -2 * log_lengthscale

log_prior_nu_Omega = np.log(2.1) * tf.ones(self.nl)

return prior_mean_Omega, log_prior_var_Omega,

log_prior_nu_Omega

Definition of a prior over W - these are standard normals

def get_prior_W(self):

prior_mean_W = tf.zeros(self.n_W)

log_prior_var_W = tf.zeros(self.n_W)

log_prior_nu_W = tf.ones(self.n_W) * np.log(2.1)

return prior_mean_W, log_prior_var_W, log_prior_nu_W

Function to initialize the posterior over omega

def init_posterior_Omega(self):

mu, sigma2, nu = self.get_prior_Omega(self.llscale0)

mean_Omega = [tf.Variable(mu[i] * tf.ones([self.d_in[i],

self.d_out[i]]), name="q_Omega") \

for i in range(self.n_Omega)]

log_var_Omega = [tf.clip_by_value(tf.Variable(sigma2[i] \

* tf.ones([self.d_in[i], self.d_out[i]]),

name="q_Omega"), -5, 5) \

for i in range(self.n_Omega)]

log_nu_Omega = [tf.clip_by_value(tf.Variable(nu[i] \

* tf.ones([self.d_in[i], self.d_out[i]]), \

name="q_Omega"), np.log(2.1),

np.log(10)) \

for i in range(self.n_Omega)]

return mean_Omega, log_var_Omega, log_nu_Omega

Function to initialize the posterior over W

def init_posterior_W(self):

mean_W = [tf.Variable(tf.zeros([self.dhat_in[i],

self.dhat_out[i]]), name="q_W") \

111

for i in range(self.n_W)]

log_var_W = [tf.clip_by_value(tf.Variable(tf.zeros(\

[self.dhat_in[i], self.dhat_out[i]]),

name="q_W"), -5, 5) \

for i in range(self.n_W)]

log_nu_W = [tf.clip_by_value(tf.Variable(tf.zeros(\

[self.dhat_in[i], self.dhat_out[i]]),

name="q_W"), np.log(2.1), np.log(10)) \

for i in range(self.n_W)]

return mean_W, log_var_W, log_nu_W

Function to compute the KL divergence between priors and

approximate posteriors over model parameters (Omega and W)

when q(Omega) is to be learned

def get_kl_Omega_to_learn(self):

kl = 0

for i in range(self.n_Omega):

kl = kl + utils.DKL_t(self.mean_Omega[i],

self.log_var_Omega[i], self.log_nu_Omega[i],

self.prior_mean_Omega[i],

self.log_prior_var_Omega[i],

self.log_prior_nu_Omega[i])

for i in range(self.n_W):

kl = kl + utils.DKL_t(self.mean_W[i],

self.log_var_W[i], self.log_nu_W[i],

self.prior_mean_W[i],

self.log_prior_var_W[i],

self.log_prior_nu_W[i])

return kl

Function to compute the KL divergence between priors and

approximate posteriors over model parameters (W only) when

q(Omega) is not to be learned

def get_kl_Omega_fixed(self):

kl = 0

for i in range(self.n_W):

kl = kl + utils.DKL_t(self.mean_W[i],

self.log_var_W[i], self.log_nu_W[i],

self.prior_mean_W[i],

self.log_prior_var_W[i],

self.log_prior_nu_W[i])

return kl

112

Returns samples from approximate posterior over Omega

def sample_from_Omega_to_learn(self):

Omega_from_q = []

for i in range(self.n_Omega):

z = utils.get_normal_samples(self.mc, self.d_in[i],

self.d_out[i])

nu = tf.exp(self.log_nu_Omega[i])

const = tf.sqrt(nu/(nu+2))

Omega_from_q.append(tf.add(tf.mul(z, const \

* tf.exp(self.log_var_Omega[i] / 2)),

self.mean_Omega[i]))

return Omega_from_q

Returns Omega values calculated from fixed random variables

and mean and variance of q() - the latter are optimized

and enter the calculation of the KL so also lengthscale

parameters get optimized

def sample_from_Omega_optim(self):

Omega_from_q = []

for i in range(self.n_Omega):

z = tf.mul(self.z_for_Omega_fixed[i], tf.ones([self.mc,

self.d_in[i], self.d_out[i]]))

nu = tf.exp(self.log_nu_Omega[i])

const = tf.sqrt(nu/(nu+2))

Omega_from_q.append(tf.add(tf.mul(z, const \

* tf.exp(self.log_var_Omega[i] / 2)),

self.mean_Omega[i]))

return Omega_from_q

Returns samples from prior over Omega - in this case,

randomness is fixed throughout learning (and Monte Carlo

samples)

def sample_from_Omega_fixed(self):

Omega_from_q = []

for i in range(self.n_Omega):

z = tf.mul(self.z_for_Omega_fixed[i],

tf.ones([self.mc, self.d_in[i], self.d_out[i]]))

nu = tf.exp(self.log_nu_Omega[i])

const = tf.sqrt(nu/(nu+2))

if self.is_ard == True:

reshaped_log_prior_var_Omega = \

113

tf.tile(tf.reshape(self.log_prior_var_Omega[i] / 2,

[self.d_in[i],1]), [1,self.d_out[i]])

Omega_from_q.append(tf.mul(z,

const * tf.exp(reshaped_log_prior_var_Omega)))

if self.is_ard == False:

Omega_from_q.append(tf.add(tf.mul(z,

const * tf.exp(self.log_prior_var_Omega[i] / 2)),

self.prior_mean_Omega[i]))

return Omega_from_q

Returns samples from approximate posterior over W

def sample_from_W(self):

W_from_q = []

for i in range(self.n_W):

z = utils.get_normal_samples(self.mc, self.dhat_in[i],

self.dhat_out[i])

nu = tf.exp(self.log_nu_W[i])

const = tf.sqrt(nu/(nu+2))

W_from_q.append(tf.add(tf.mul(z, const \

* tf.exp(self.log_var_W[i] / 2)), self.mean_W[i]))

return W_from_q

Returns the expected log-likelihood term in the variational

lower bound

def get_ell(self):

Din = self.d_in[0]

MC = self.mc

N_L = self.nl

X = self.X

Y = self.Y

batch_size = tf.shape(X)[0]

This is the actual batch size when X is passed to the graph

of computations

The representation of the information is based on

3-dimensional tensors (one for each layer)

Each slice [i,:,:] of these tensors is one Monte Carlo

realization of the value of the hidden units

At layer zero we simply replicate the input matrix X

self.mc times

self.layer = []

self.layer.append(tf.mul(tf.ones([self.mc, batch_size, Din]),

114

X))

Forward propagate information from the input to the output

through hidden layers

Omega_from_q = self.sample_from_Omega()

W_from_q = self.sample_from_W()

for i in range(N_L):

layer_times_Omega = tf.batch_matmul(self.layer[i],

Omega_from_q[i])

Apply the activation function corresponding to the

chosen kernel - PHI

if self.kernel_type == "RBF":

Phi = tf.exp(0.5 * self.log_theta_sigma2[i]) \

/ (tf.to_float(tf.sqrt(1. * self.n_rff[i]))) \

* tf.concat(2,[tf.cos(layer_times_Omega),

tf.sin(layer_times_Omega)])

if self.kernel_type == "arccosine":

if self.arccosine_degree == 0:

Phi = tf.exp(0.5 * self.log_theta_sigma2[i]) \

/ (tf.to_float(tf.sqrt(1. * self.n_rff[i]))) \

* tf.concat(2,

[tf.sign(tf.maximum(layer_times_Omega, 0.0))])

if self.arccosine_degree == 1:

Phi = tf.exp(0.5 * self.log_theta_sigma2[i]) \

/ (tf.to_float(tf.sqrt(1. * self.n_rff[i]))) \

* tf.concat(2,

[tf.maximum(layer_times_Omega, 0.0)])

if self.arccosine_degree == 2:

Phi = tf.exp(0.5 * self.log_theta_sigma2[i]) \

/ (tf.to_float(tf.sqrt(1. * self.n_rff[i]))) \

* tf.concat(2,

[tf.square(tf.maximum(layer_times_Omega, 0.0))])

F = tf.batch_matmul(Phi, W_from_q[i])

if self.feed_forward and not (i == (N_L-1)):

In the feed-forward case, no concatenation in the

last layer so that F has the same dimensions of Y

F = tf.concat([F, self.layer[0]], 2)

self.layer.append(F)

Output layer

layer_out = self.layer[N_L]

Given the output layer, we compute the conditional

likelihood across all samples

ll = self.likelihood.log_cond_prob(Y, layer_out)

115

Mini-batch estimation of the expected log-likelihood term

ell = tf.reduce_sum(tf.reduce_mean(ll, 0)) * self.num_examples \

/ tf.cast(batch_size, "float32")

return ell, layer_out

Maximize variational lower bound --> minimize Nelbo

def get_nelbo(self):

kl = self.get_kl()

ell, layer_out = self.get_ell()

nelbo = kl - ell

return nelbo, kl, ell, layer_out

Return predictions on some data

def predict(self, data, mc_test):

out = self.likelihood.predict(self.layer_out)

nll = - tf.reduce_sum(-np.log(mc_test) \

+ utils.logsumexp(self.likelihood.log_cond_prob(self.Y,

self.layer_out), 0))

#nll = - tf.reduce_sum(tf.reduce_mean(\

self.likelihood.log_cond_prob(self.Y,

self.layer_out), 0))

if type(data) == list:

pred, neg_ll = self.session.run([out, nll],

feed_dict={self.X:data[0],

self.Y: data[1],

self.mc:mc_test})

else:

pred, neg_ll = self.session.run([out, nll],

feed_dict={self.X:data.X,

self.Y: data.Y,

self.mc:mc_test})

mean_pred = np.mean(pred, 0)

return mean_pred, neg_ll

Return the list of TF variables that should be "free"

to be optimized

def get_vars_fixing_some(self, all_variables):

if (self.q_Omega_fixed_flag == True) and \

(self.theta_fixed_flag == True):

variational_parameters = [v for v in all_variables \

if (not v.name.startswith("q_Omega") and \

not v.name.startswith("log_theta"))]

116

if (self.q_Omega_fixed_flag == True) and \

(self.theta_fixed_flag == False):

variational_parameters = [v for v in all_variables \

if (not v.name.startswith("q_Omega"))]

if (self.q_Omega_fixed_flag == False) and \

(self.theta_fixed_flag == True):

variational_parameters = [v for v in all_variables \

if (not v.name.startswith("log_theta"))]

if (self.q_Omega_fixed_flag == False) and \

(self.theta_fixed_flag == False):

variational_parameters = all_variables

return variational_parameters

Function that learns the deep GP model with random Fourier

feature approximation

def learn(self, data, learning_rate, mc_train, batch_size,

n_iterations, optimizer = None, display_step=100,

test = None, mc_test=None, loss_function=None,

duration = 1000000, less_prints=False):

total_train_time = 0

if optimizer is None:

optimizer = tf.train.AdadeltaOptimizer(learning_rate)

Set all_variables to contain the complete set of TF variables

to optimize

all_variables = tf.trainable_variables()

Define the optimizer

train_step = optimizer.minimize(self.loss, var_list=all_variables)

Initialize all variables

init = tf.global_variables_initializer()

Fix any variables that are supposed to be fixed

train_step = optimizer.minimize(self.loss,

var_list=self.get_vars_fixing_some(all_variables))

Initialize TF session

self.session.run(init)

Set the folder where the logs are going to be written

summary_writer = tf.summary.FileWriter('logs/', self.session.graph)

if not(less_prints):

nelbo, kl, ell, _ = self.session.run(self.get_nelbo(),

feed_dict={self.X: data.X, self.Y: data.Y,

self.mc: mc_train})

print("Initial kl=" + repr(kl) + " nell=" \

+ repr(-ell) + " nelbo=" + repr(nelbo), end=" ")

117

print(" log-sigma2 =", self.session.run(self.log_theta_sigma2))

minimum = 100

iter_ = 0

Present data to DGP n_iterations times

for iteration in range(n_iterations):

Stop after a given budget of minutes is reached

if (total_train_time > 1000 * 60 * duration):

break

Present one batch of data to the DGP

start_train_time = current_milli_time()

batch = data.next_batch(batch_size)

X_train_batch = batch[0]

monte_carlo_sample_train = mc_train

if (current_milli_time() - start_train_time) < \

(1000 * 60 * duration / 2.0):

monte_carlo_sample_train = 1

self.session.run(train_step,

feed_dict={self.X: X_train_batch,

self.Y: batch[1],

self.mc: monte_carlo_sample_train})

total_train_time += current_milli_time() - start_train_time

Display logs every "FLAGS.display_step" iterations

if iteration % display_step == 0:

start_predict_time = current_milli_time()

if less_prints:

print("i=" + repr(iteration), end = " ,")

else:

nelbo, kl, ell,

_ = self.session.run(self.get_nelbo(),

feed_dict={self.X: data.X,

self.Y: data.Y,

self.mc: mc_train})

print("i=" + repr(iteration) + \

" kl=" + repr(kl) + " nell=" + \

repr(-ell) + " nelbo=" + repr(nelbo),

end=" ")

print(" log-sigma2=",

self.session.run(self.log_theta_sigma2),

end=" ")

if loss_function is not None:

pred, nll_test = self.predict(test, mc_test)

elapsed_time = total_train_time + \

118

(current_milli_time() - start_predict_time)

loss_t = loss_function.eval(test.Y, pred)

print(loss_function.get_name() + "=" + \

"%.4f" % loss_t, end = " ,")

print(" nll_test=" + \

"%.5f" % (nll_test / len(test.Y)), end = " ,")

print(" time=" + repr(elapsed_time), end = " ")

print("")

if loss_t<minimum:

minimum = loss_t

iter_ = iteration

if iteration > iter_ + 5000:

return minimum, iter_

return minimum, iter_

119

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF PUBLICATIONS
	Introduction
	Deep Neural Networks
	Deep Learning
	Generative Models
	Deep Network Regularization

	Bayesian Inference
	Variational Bayes
	Sampling Methods
	Model Selection

	Deep Network Regularization via Bayesian Inference of Synaptic Connectivity
	Introduction
	Theoretical Background
	DropConnect
	Black-Box Variational Inference

	Proposed Approach
	Training DNNs with DropConnect++ layers
	Feedforward computation in DNNs with DropConnect++ layers

	Experimental Evaluation
	Computational complexity
	Further investigation

	Conclusions

	Asymmetric Deep Generative Models
	Introduction
	Theoretical Foundation
	Variational Auto-Encoder
	The rMSN distribution
	Skip Deep Generative Models

	Proposed Approach
	Expiremental Evaluation
	Workflow recognition dataset
	Honeybee dance dataset
	Yearly song classifciation using audio features
	Image classifcation benchmarks
	A note on computational complexity

	Conclusions

	Deep Learning with t-Exponential Bayesian Kitchen Sinks
	Introduction
	Methodological Background
	Weighted Sums of Random Kitchen Sinks
	The Student's-t Distribution
	The t-Divergence

	Proposed Approach
	Model Formulation
	Model Training
	Inference Algorithm

	Experimental Evaluation
	Comparative Results
	Further Investigation
	Are t-Exponential Bayesian Kitchen Sinks More Potent Than Random Kitchen Sinks?
	Computational Complexity

	Conclusions

	Future Endeavors
	Generative Adversarial Networks
	Neural Attention
	Deep Q-networks

	REFERENCES
	APPENDIX I

