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Abstract 

We employ a Smooth Transition Conditional Correlation (STCC) model and the latest 

available data to examine for a non-linear relationship between changes in global 

temperature and anthropogenic emissions of greenhouse gases. Controlling for natural 

factors which also affect global temperature, we find that anthropogenic climate 

forcings and global temperature have practically zero correlation before a certain 

threshold value is reached. In contrast, correlation rises strongly after anthropogenic 

emissions exceed this threshold. The value of this threshold can be traced back in the 

mid-1960’s, during the years of the post-WWII economic boom, when a substantial 

amount of additional greenhouse gases (compared to the pre-industrial era) had 

started accumulating in the atmosphere due to the burning of fossil fuels from human 

activities.  
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After which threshold do anthropogenic greenhouse gas emissions 

have an effect on global temperature? 

 

Introduction 

In the post-1990’s world, there has probably been no other environmental 

issue which has attracted more attention than the anthropogenic effect on climate 

change, and more specifically on temperature increases. In recent years, a growing 

number of scholars examine the causes of global warming using econometric 

methods.1 In general, these studies produced mixed results: some document that 

human activities merely cause a temporary effect on temperature (Beenstock et al, 

2012), others that this effect is less significant than usually considered (Stern and 

Kaufmann, 2014), while a third strand documents a stronger effect (Pretis and 

Hendry, 2013; Estrada et al, 2013; Dergiades et al, 2016; Stips et al, 2016; Leggett 

and Ball, 2015; Chevillion, 2015, Pretis and Allen, 2013). 

In an attempt to examine whether climate forcings (and more specifically 

anthropogenic forcings) are related to global temperature changes, the common 

methodology employed by the majority of these studies is a variation of Granger-

causality and co-integration techniques.2 Therefore, the goal of these studies is 

primarily to investigate the determinants and the behaviour of a long run relationship.  

Focusing on the long-run effects, the literature has thus far not investigated the 

nature of the short-run relationship between anthropogenic forcings and temperature. 

Given that changes in the former are expected to have a contemporaneous effect on 

the evolution of the latter, this knowledge should be valuable to climate scientists. In 

                                                 
1 Econometric methods are used to explore several aspects of climate change, such as the relationship 

between anthropogenic emissions and climate, the effects of climate change on the output of different 

economic sectors, the impact of climate on mortality etc. See an overview of these approaches in 

Hsiang (2016). 
2 A climate forcing is defined as an imposed perturbation of the Earth's energy balance, which can be 

the result of natural phenomena (natural forcings) or human activities (anthropogenic forcings). A 

positive or negative forcing tends to make Earth warmer or cooler respectively (NRC, 2001).  



 

 

addition, the findings of the above studies could potentially be influenced by the non-

linearity of the relationship as the correlation between temperature and anthropogenic 

forcings is not necessarily linear in its parameters. Intuitively, this suggests that 

anthropogenic forcings may have an influence on temperature only after a threshold 

value, or more generally that the correlation between the two is not constant over 

time. Such a hypothesis is in line with the fact that global temperature increases have 

only become a pressing issue in the recent past, which may be linked to the fact that a 

substantial amount of greenhouse gases has accumulated in the atmosphere. 

 Figure 1, obtained from Marland et al (2016) the Carbon Dioxide Information 

Analysis Center (CDIAC), shows the global carbon emissions from 1751 to 2013. The 

red solid line is the total effect which consists of various sources of carbon emissions. 

The grey dashed line corresponds to emissions from combustion of gas fuels such as 

natural gas, with the dotted green line and the blue (dense) dashed line signifying the 

emissions from liquid and solid fossil-fuel burning respectively. The black dash-and-

dot line are the emissions coming from cement production which are on the rise the 

last few years. It is evident from the graph that carbon emissions responsible for green 

house effects have been stable for more than a decade but have been surging since the 

1960s.    

In order to formally test the hypothesis of a change in the correlation between 

anthropogenic forcings and temperature, this paper employs a time-varying 

conditional correlation model for the examination of the temperature-anthropogenic 

forcing relationship. To our knowledge, this is the first attempt to apply such a model 

to examine whether these correlations change over time. In addition, our work differs 

from the existing literature in an essential way since it examines the drives of short-



 

 

run variation in the relationship between anthropogenic forcings and global 

temperature changes. 

The main findings of this study suggest that correlation between the two 

variables is essentially zero up to a specific level of anthropogenic forcings while it 

jumps to 0.54 after this level is exceeded. The changing point in correlation lies in the 

1960’s, during the years of the post-WWII economic boom, when a substantial 

amount of additional greenhouse gases (compared to the pre-industrial era) had 

started accumulating in the atmosphere due to the burning of fossil fuels from human 

activities which is also evident in figure 1.  

The findings underline the importance of economic activity on anthropogenic 

forcings. At the same time, they confirm the view that is widely shared among climate 

scientists and declared by the United Nations Intergovernmental Panel on Climate 

Change, that humans are the main cause of current global warming (IPCC, 2014). 

The rest of the paper is organized as follows: Section 2 presents the 

econometric methodology. Section 3 presents the empirical findings. The paper ends 

with a summary and conclusions. 

 

Econometric Methodology  

As already discussed, the literature investigating the effects of the 

anthropogenic interpretation of global warming (i.e. whether increases in atmospheric 

anthropogenic forgings have raised global temperature), focuses solely on long-run 

relationships. Furthermore, an important caveat of the analyses is that they do not 

allow for the possibility of a non-linear relationship between anthropogenic forcings 

and global temperature, after controlling for non-anthropogenic factors. In addition, to 



 

 

our knowledge there is no study to examine whether these correlations change over 

time, a feature that standard regression models fail to accommodate. 

To address this, we propose the use of the Smooth Transition Conditional 

Correlation (STCC) model (see Berben and Jansen, 2005; Silvennoinen and 

Teräsvirta, 2005) to test whether correlations between global temperature and 

anthropogenic forgings change. 

Consider a time series of two variables {yt}, t = 1, …, n, namely tempt and zt 

(i.e. yt = [tempt,zt]′), the stochastic properties of which are assumed to be described by 

the following model: 

𝑡𝑒𝑚𝑝𝑡 = 𝛽0 + ∑ 𝛽1,𝜅𝑡𝑒𝑚𝑝𝑡−𝑘
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where 𝑡𝑒𝑚𝑝𝑡 refers to the first difference of the global mean temperature anomaly 

(sea and land combined, as in Beenstock et al, 2012) at time t, 𝑥𝑡 refers to non-

anthropogenic forcings and 𝑧𝑡 refer to the change in anthropogenic forcings.3, 4  

The second equation follows a similar process such that:  

𝑧𝑡 = 𝛿0 + ∑ 𝛿1,𝜅𝑧𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝛿2,𝑙𝑡𝑒𝑚𝑝𝑡−𝑙

𝑞

𝑙=1

+ ∑ 𝛿3,𝑏(1 − 𝐺(𝑡𝑖𝑚𝑒; 𝛾𝑔; 𝑐𝑔))𝑔𝑟𝑜𝑤𝑡ℎ𝑡−𝑏

𝑟

𝑏=1

+ ∑ 𝛿4,𝑏𝐺(𝑡𝑖𝑚𝑒; 𝛾𝑔; 𝑐𝑔)𝑔𝑟𝑜𝑤𝑡ℎ𝑡−𝑏

𝑟

𝑏=1

+ 휀2𝑡 

(2) 

where 𝑡𝑒𝑚𝑝𝑡, 𝑥𝑡 and 𝑧𝑡 are defined as in (1) and 𝑔𝑟𝑜𝑤𝑡ℎ𝑡 refers to world GDP 

growth at time t. Based on SIC criterion and without any loss of generality, the lag 

order is set to one for all variables.  

                                                 
3 Data definitions and sources can be found in the appendix. 
4 Since changes are employed in econometric methodology, the estimates represent short-run 

variations. 



 

 

To capture possible temporal changes in the effects of growth on the change in 

anthropogenic forcings we let 𝐺(𝑡𝑖𝑚𝑒; 𝛾𝑔, 𝑐𝑔) be a logistic function, where time is a 

variable that measures time, γg a coefficient that accounts for the speed of adjustment 

from one regime to the other, while cg determines the point of the change in time.5  

In order to capture any temporal effects in the error volatilities and 

correlations, the error process of equations (1) and (2) is assumed to follow the 

process  
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σ12,t  = ρt (σ 1t σ 2t)
 1/2, (7) 

ρt  = ρ0(1−G(st;γ,c)) + ρ1G(st;γ,c),  (8) 

where the conditional variances σ1t and σ2t both follow a GARCH(1,1) specification 

which is able to adequately capture the persistence (if any) in second moments.  

The sizes of αi and ξi, (i=1,2) determine the short and long run dynamics of the 

resulting volatility series, respectively. Large ξi coefficients indicate that shocks to 

conditional variance take a long time to die out, implying persistent volatility. On the 

                                                 
5 More details regarding the logistic function are given in the following paragraphs where this function 

is used for the case of conditional correlations. 



 

 

other hand, large αi coefficients indicate that volatility reacts quite intensively to new 

information.  

To capture temporal changes in the contemporaneous conditional correlation 

ρt we follow Berben and Jansen (2005) and Silvennoinen and Teräsvirta (2005) by 

letting G(st; γ, c) be the logistic function (similarly to growth term in equation 2) 

1
( ; , ) ,     0,  

1 exp( ( ))
t

t

G s c
s c

g = g >
+ - g -

  (9) 

where st is the transition variable, and γ and c determine the smoothness and location, 

respectively, of the transition between the two correlation regimes.6 The starting 

values of γ and c are determined by a grid search (see Berben and Jansen, 2005) and 

are estimated in one step by maximizing the likelihood function. Regarding the 

transition variable, while any variable can act like one, given that the purpose of this 

paper is to examine the effect of humans on climate change, we define it as a function 

of total anthropogenic forcings (at time t-1). As robustness check we also employ time 

which is (for a sample size n) described as: st = t/n (where n denotes the sample size).7  

The resulting Smooth Transition Conditional Correlation (STCC) GARCH 

model is able to capture a wide variety of patterns of change. Differing ρ0 and ρ1 

imply that the correlations monotonically increase (ρ0 < ρ1) or decrease (ρ0 > ρ1), with 

the pace of change determined by the slope parameter γ. This change is abrupt for 

large γ, and becomes a step function as γ → ∞, with more gradual change represented 

by smaller values of this parameter (in the estimation, the maximum value of the γ 

parameter is set to be 100). Parameter c defines the location of the transition between 

the two correlation regimes. In other words, c indicates the mid-point of any change in 

                                                 
6 The transition function G(st; γ, c) is bounded between zero and one, so that, provided there are valid 

correlations lying between -1 and +1, the conditional correlation ρt will also lie between −1 and +1.  
7 In practice, we scale (t/n − c) by σt/n, the standard deviation of the transition variable t/n, to make 

estimates of γ comparable across different sample sizes. 



 

 

the correlation due to a change in the transition variable, here anthropogenic forcings. 

When the transition variable has values less (greater) than c, the correlations are 

closer to the state defined by ρ0 (ρ1).
8  

Prior to employing the STCC specification, a Lagrange Multiplier (LM) test 

against a constant conditional correlation model (Berben and Jansen, 2005, 

Silvennoinen and Teräsvirta, 2005) is undertaken. Since the constant correlation null 

hypothesis is always rejected, a STCC model is estimated. Subsequently we examine 

whether a second transition (in correlations) exists by performing the LM test for this 

case developed by Silvennoinen and Teräsvirta (2007).9 If such evidence is found, 

then we extend the original STCC-GARCH model by allowing the conditional 

correlations to vary according to two transition variables. The time-varying 

correlation structure in the Double Smooth Transition Conditional Correlation 

(DSTCC) GARCH model is imposed through the following equation: 

 

ρt = ρ0(1−G1(st;γ1,c1))+ρ1G1(st;γ1,c1)(1- G2(st;γ2,c2))+ρ2G1(st;γ1,c1)G2(st;γ2,c2), (10) 

 

where each transition function has the logistic form of equation (9).  The second 

transition variable is also a function of anthropogenic forcings and as robustness a 

function of time. Hence, equation (10) allows the possibility of a non-monotonic 

change in correlation over the sample. The parameters γi and ci (i=1,2) are interpreted 

in the same manner as for the STCC-GARCH model, but to ensure identification we 

require c1 < c2 and hence that the two correlation transitions occur at different levels 

of anthropogenic forcings or points of time. 

                                                 
8 The constant conditional correlation model (Bollerslev, 1990) is a special case of the STCC-GARCH 

model, obtained by setting either ρ0 = ρ1 or γ = 0. 
9 For analytical expressions for the test statistics and the required derivatives, we refer to Silvennoinen 

and Teräsvirta (2007). 



 

 

The likelihood function at time t (ignoring the constant term and assuming 

normality) is given by 

( 1/2) '1 1
( ) ln ,

2 2
t t t t tl   


      (13) 

where θ is the vector of all the parameters to be estimated. The log-likelihood for the 

whole sample from time 1 to n, L(θ), is given by 

1

( ) ( ).
n
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t

L l
=

q = qε  (14) 

This log-likelihood is maximized with respect to all parameters simultaneously, 

employing numerical derivatives of the log-likelihood. To allow for potential non-

normality of 1t t -e Y , robust “sandwich” standard errors (Bollerslev and Wooldridge, 

1992) are used for the estimated coefficients. 

 

Data and Empirical Findings  

Data Description 

To stimulate the discussion, we first provide an overview of the data 

underlying our analysis. As usual in the literature, temperature is defined as the 

temperature anomaly (land and sea temperature combined) with reference to the 

1951-1980 base period. Anthropogenic forcings refer to the components of radiative 

transfer calculation which can be attributed to human actions, and are calculated as 

the sum of six forcings (well mixed greenhouse gas, ozone, human land use, black 

carbon snow albedo, the direct effect of tropospheric aerosols and the indirect effect 

of tropospheric aerosols). All these forcings are the direct or indirect result of human 

activities. 



 

 

Similarly, natural forcings refer to factors affecting global temperature which 

have to be attributed to natural phenomena. These are specified as the sum of 

stratospheric aerosols, solar irradiance and orbital variations. Data for all forcings 

were obtained from Miller et al (2014). Economic activity, measured as the World 

GDP is calculated by summing the domestic production of 21 countries, as produced 

by Maddison (2009). Details on the data sources and series construction can be found 

in the appendix. 

Figures 2 and 3 provide an overview of the developments in change in 

anthropogenic and natural forcings, respectively. Changes in anthropogenic forcings 

depict a volatile behaviour while natural forcings’ behaviour is erratic with unstable 

increases and decreases. Figure 4, presents world GDP growth estimates, in billions of 

1990 international Greary-Khamis (GK) dollars.  

The change in temperature anomaly, depicted in Figure 5, while overall much 

noisier than the other estimates, also follows an increasing path, which becomes 

evident from the late-1970’s onwards. Careful observation of Figure 3 though 

suggests that natural forcings may have played a significant role in hiding the increase 

in temperature anomaly, as these have mostly contributed to the cooling of the planet 

from the early 1960’s until the mid-1990’s. Even though these had a strong effect on 

temperature, it appears that the impact anthropogenic forcings have had on 

temperature was much greater, leading to further increases in global warming. 

  Summary statistics reported in Table 1 (panel a) show positive average 

values for all variables, with the difference of the global mean temperature anomaly 

(temptt) having substantially higher (unconditional) volatility, compared to the rest of 

the variables. The Ljung-Box (LB) statistics for up to 5 lags, for the levels and their 

squared values, indicate the presence of linear and partially non-linear dependencies, 



 

 

respectively. Linear dependencies may indicate some dependencies to previous 

values, while non-linear dependence suggest that an autoregressive conditional 

heteroskedasticity specification may be useful to model the second moments. 

Table 1 (panel b), presents the correlations among the variables. Measured 

over the whole sample, the (unconditional) correlations indicate a rather low 

correlation. However, these values may conceal substantial differences over time that 

are not able to be captured by simple statistics.  Therefore, while informative, these 

unconditional correlations cannot indicate whether the correlations hold for the whole 

sample period. 

For instance, Figure 6 presents the 30-year rolling Pearson correlation between 

the change in anthropogenic forcings and temperature anomaly. This simple metric 

highlights the fact that the relationship between the two variables is not only non-

linear but fluctuates over time. During the periods where natural forcings fluctuated 

around zero (i.e. during the period from 1918 to1960 based on Figure 3) correlation 

reached a value around 0.40. After the 1970’s the correlation value drops and 

increases again by the late 1990’s.    

The above-documented change in correlation gives indications why several 

models, using long time-series data may have failed, at times, to find a clear 

relationship between anthropogenic forcings and temperature anomaly. In addition, 

this behaviour also warrants the use of alternative methodologies in order to account 

for the non-linearity of the relationship. To this extent, the (D)STCC methodology is 

employed in order not only to account for the non-linearity of the relationship but also 

to examine the threshold after which this change in the relationship between 

temperature and anthropogenic forcings takes place. 

 



 

 

Estimation Results  

 In this section, we first look at the conditional correlations of the full sample 

assuming that there is no regime shift within the covered time period. Then, we apply 

a LM test to investigate whether a structural change has occurred in the correlations 

between the difference in global mean temperature anomaly and the change in 

anthropogenic forcings. Next, we estimate the STCC-GARCH model to primarily 

determine the levels of anthropogenic forcings that change the pattern of this 

correlation and secondly the timing of this change. Finally, we apply a LM test to 

investigate whether another transition exists and, where appropriate, we extend the 

STCC-GARCH model and estimate the DSTCC-GARCH model with more than one 

transition regimes in correlations. 

Table 2, column 1 shows the estimated conditional correlations estimated 

directly from the constant conditional correlation (CCC) specification under the 

assumption of no regime shift between the two variables of interest. The results 

suggest that the conditional correlations are rather low, in line with the descriptive 

statistics. However, the question whether these correlations change over time remains 

unanswered.  

Evaluation of structural changes 

To assess whether the proposed time-varying STCC-GARCH specification 

improves the model's ability to track the time-series properties of the data over a fixed 

parameter version, we employ the LM test developed by Silvennoinen and Teräsvirta 

(2007).10 This test is designed to discriminate between the constant correlation 

GARCH model and the STCC-GARCH model and is applied to the residuals of 

equations (1) and (2).  

                                                 
10 Silvennoinen and Teräsvirta (2007) provide an excellent description of the details of this test. Note 

that the unidentified parameter problem that exists under the null hypothesis is dealt using a Taylor 

series expansion, following Luukkonen et al. (1988).  



 

 

Under the null hypothesis, the LM statistic is asymptotically χ2 distributed 

with one degree of freedom. The LM test does not discriminate between an increase 

and a decrease in correlation, but simply tests the null hypothesis H0: γ = 0 against the 

alternative of Ha: γ > 0, which implies a time-varying conditional correlation. To 

determine whether the correlation has gone up or down, the STCC-GARCH model 

has to be estimated. As stated earlier, based on Ljung-box statistics we assume that 

both variables have time-varying conditional variances that follow a GARCH(1,1) 

specification.11 

The last row of Table 2, reports the LM statistics. The test reveals that the null 

hypothesis of no structural change in the correlation between the difference in global 

mean temperature anomaly and change in anthropogenic forcings is rejected at any 

conventional level of significance, supporting the notion of a regime switch in the 

conditional correlations.  

The presence of one structural change in the correlation between the two 

variables implies a monotonic relationship. We next examine the existence of a 

second transition that allows for a non-monotonic relationship which can capture 

more complicated patterns in time-varying correlations using the LM test developed 

by Silvennoinen and Teräsvirta (2007). The results in the last row of Table 2 suggest 

that a second break exists. 

These findings clearly demonstrate that it is not reasonable to assume that 

conditional correlations remain constant at all levels of anthropogenic forcings. 

Therefore, they are characterized by more than two dominant trends. To examine the 

                                                 
11 We establish the adequacy of the model specification by performing standardized residual diagnostic 

tests. The mean and variance of the standardized residuals are found to have values of zero and one 

respectively for all cases. In addition, the Ljung-Box statistics in the standardized and squared 

standardized residuals show no evidence of linear dependence, suggesting that the model is well 

specified. These results are available upon request. 



 

 

direction and the pattern of change(s), we turn next to the estimation of the STCC-

GARCH and the DSTCC-GARCH models. 

Time-varying shifts in conditional correlations 

Based on the evidence provided by the LM tests, Tables 2 and 3, report the 

estimated parameters of the (D)STCC-GARCH models described in equations (1)-

(9).12  

Starting with mean equations (Table 2, panels A and B), the change in global 

mean temperature anomaly (tempt) is negatively correlated to its lag value but the 

effects of anthropogenic forcings (zt-1) on temperature are insignificant. This finding 

may be attributed to the low levels of anthropogenic forcings for a long period of the 

dataset. As for equation (2), anthropogenic forcings are predicted by their lag values 

with global mean temperature anomaly having insignificant effects. By employing a 

logistic function with time as a transition variable, the estimates suggest that there is a 

different behaviour of GDP growth on the change in anthropogenic forcings before 

and after the threshold point (cg=0.56) which corresponds to the period around 1960. 

More specifically, before 1960 the effect of GDP growth on anthropogenic forcings is 

essentially zero (negative but insignificant), while after it turns positive, suggesting 

that the increasing human activity regarding greenhouse gases has adverse effects on 

global temperature.  

As far as the coefficients of the conditional covariance matrix of te  are 

concerned (Table 2, panels C and D) only the long run persistence coefficients (ξ1) of 

the volatility equation of the difference in global mean temperature anomaly are 

significant, suggesting that changes in temperature have permanent effects. The 

                                                 
12 The results for the mean and variance equations of the CCC specification (not reported but available 

upon request) are qualitatively similar to those of the STCC and DSTCC specifications.   



 

 

insignificance of the rest of the coefficients in equation (6) suggests that the volatility 

of the difference in anthropogenic forcings is constant over time. 

Turning our attention to the examination of the transition functions, Table 3, 

columns 2 and 3, report the conditional correlations in the original ( 0 ), the interim - 

where DSTCC is employed - ( 1 ), and the most recent ( 1  or 2 ) regimes, the 

locations of the transitions (c1 and/or c2), and, finally, the shape of the transitions ( 1  

and/or 2 ). 

Starting with the case of a single break in conditional correlations (Table 3, 

column 2), the estimated parameter c1 suggests that when the level of anthropogenic 

forcings is above 0.945 the correlation changes from zero (insignificant) to positive 

0.544 with the transition being abrupt as γ1 indicates. The value of this threshold 

(which coincides with the threshold of the function of growth on anthropogenic 

forcings) can be traced back in the mid-1960’s, during the years of the post-WWII 

economic boom, when a substantial amount of additional greenhouse gases 

(compared to the pre-industrial era) had started accumulating in the atmosphere due to 

the combustion of fossil fuels from human activities (see also Figure 2).  In other 

words, this suggests that after the 1960s a 1% change in anthropogenic forcings 

coincided with a 0.5% change in temperature anomaly. Nevertheless, the LM test 

suggests that a second break in correlations should be included; therefore, we proceed 

with the estimation of the DSTCC specification. 

In this case the estimated parameters for c1 and c2 are equal to 0.949 and 2.395 

respectively, with the conditional correlations varying from -0.074 (ρ0) when the 

levels of anthropogenic forcings are below c1 to 0.521 (ρ1) when they are between 

0.949 and 2.395 and to 0.809 when they are above the upper threshold. Once again 

the transition from one level to the other is abrupt as γ parameters suggest. As for the 



 

 

timing of the changes, the first one takes place around 1960 (confirming the pattern of 

the STCC specification) while the second around 1990 - see Figure 7 for graphical 

illustration.  

Robustness Checks  

In this section, various robustness checks are employed to examine the validity 

of our findings.  

Firstly, equations (1) – (9) are estimated using time as the transition variable. 

In this manner, the threshold point identifies the exact point of change of the 

conditional correlation. The results for conditional correlations are reported in Table 

4, column 1 (for STCC specification) and column 2 (for DSTCC specification), 

respectively.13  Threshold point for the STCC is given at 0.567 (around the period 

1955) confirming the previous findings where anthropogenic forcings were used as 

transition variable. Previous findings are also confirmed under the DSTCC 

specification where the first threshold point (c1) is the same with the STCC model, 

while the second (c2) equals 0.964 (around 1990s) which again confirms the findings 

of previous section. Furthermore, the pattern of conditional correlation is qualitatively 

similar to previous estimations. 

In addition to the above, a different dataset is utilised and the DSTCC 

specification is re-estimated using both anthropogenic forcings and time as transition 

variables. The new dataset is employed because the variables previously used are not 

obtained via direct observation, but are model estimates. To account for any potential 

loss of information due to this issue, this section provides additional estimations of the 

short-run effects of changes in anthropogenic forcings on the change of temperature 

                                                 
13 The results for mean and variance equations (available upon request) remain qualitatively the same 

for all robustness checks’ estimations. 



 

 

anomaly using observational data from Stern and Kaufman (2014).14 The full 

description of the dataset is given in the Appendix 

These findings are presented in Table 4, columns 3 for the DSTCC with 

anthropogenic forcings as the transition variable and column 4 for the DSTCC with 

time as the transition variable. Once again structural changes in conditional 

correlations and their timing confirm the findings of previous section and suggest that 

the post-WWII economic boom is crucial for the adverse effects on climate change. 

Overall, under either single or double smooth transition conditional correlation 

specification using observational or model-based data with either time or 

anthropogenic forcings as the transition variable, it is clear that the additional 

greenhouse gases accumulated in the atmosphere in recent decades have significantly 

contributed to global warming. 

 

Conclusions 

In its latest Synthesis Report, the Intergovernmental Panel on Climate Change 

emphasized that human influence on the climate system is clear and growing. Many 

of the observed changes since the 1950s are unprecedented over decades to millennia 

and it is “extremely likely” (95 percent certain) that more than half of the observed 

increase in global average surface temperature from 1951 to 2010 was caused by the 

anthropogenic increase in greenhouse gas concentrations and other anthropogenic 

forcings together. In addition, they stressed that the more human activities disrupt the 

climate, the greater the risks of severe, pervasive and irreversible impacts for people 

and ecosystems (IPCC, 2014; p. 40 & 48). 

                                                 
14 We thank Trude Storelvmo and Robert Kaufman for pointing this issue. 



 

 

Our econometric analysis confirms the above findings of climate science. By 

employing a Smooth Transition Conditional Correlation model for the first time in 

climate-related research, we find that the effect of a change in anthropogenic activities 

on global temperature changes started becoming significant only after WWII. This 

identifies a non-linear relationship between temperature and anthropogenic forcings, 

which indicates that the effect of humans on climate is very likely to become more 

important in the future. Thus, the severity of climate change impacts may worsen in 

the coming decades. Moreover, the analysis sheds light into the short run effects of 

human activities on temperature change, a valuable insight for climate scientists 

which most previous studies have overlooked due to the methodology employed. Our 

results are robust to alternative specifications and to estimations with a different 

dataset. 
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Appendix I 

Table A1 – Data sources and definitions 

Variable name Short name Unit Range Data Source Link 

Well mixed greenhouse gas 𝑊𝑀𝐺𝐻𝐺𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Ozone 𝑂3𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Land Human Use 𝐿𝑎𝑛𝑑𝑈𝑠𝑒𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Black Carbon Snow Albedo 𝑆𝑛𝑜𝑤𝑎𝑙𝑏𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Tropospheric Aerosols (Direct) 𝑇𝑟𝑜𝑝𝐷𝑖𝑟𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Tropospheric Aerosols (Indirect) 𝑇𝑟𝑜𝑝𝐼𝑛𝑑𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Stratospheric Aerosols 𝑆𝑡𝑟𝑎𝑡𝐴𝑒𝑟𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Solar Irradiance 𝑆𝑜𝑙𝑎𝑟𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Orbital Variations 𝑂𝑟𝑏𝑖𝑡𝑎𝑙𝑡 Wm-2 1880-2012 Miller et al (2014) http://data.giss.nasa.gov/modelforce/ 

Temperature Anomaly 𝑡𝑒𝑚𝑝𝑡 oC 1880-2015 GISS http://data.giss.nasa.gov/gistemp/ 

World GDP GDP GK Dollars 1884-2006 Maddison (2009) http://www.ggdc.net/maddison/ 

 

 

 



 

 

From the above, the anthropogenic forcings (𝑧𝑡) series is defined as: 

 

𝑧𝑡 =  𝑊𝑀𝐺𝐻𝐺𝑡 + 𝑂3𝑡 + 𝐿𝑎𝑛𝑑𝑈𝑠𝑒𝑡 + 𝑆𝑛𝑜𝑤𝑎𝑙𝑏𝑡 + 𝑇𝑟𝑜𝑝𝐷𝑖𝑟𝑡 + 𝑇𝑟𝑜𝑝𝐼𝑛𝑑𝑡  (A1.1) 

where 𝑊𝑀𝐺𝐻𝐺𝑡, 𝑂3𝑡, 𝐿𝑎𝑛𝑑𝑈𝑠𝑒𝑡, 𝑆𝑛𝑜𝑤𝑎𝑙𝑏𝑡, 𝑇𝑟𝑜𝑝𝐷𝑖𝑟𝑡, and 𝑇𝑟𝑜𝑝𝐼𝑛𝑑𝑡 as defined as 

in Appendix I, Table A1. Similarly, the series for natural (non-anthropogenic) 

forcings (𝑥𝑡) is defined as: 

 

𝑥𝑡 = 𝑆𝑡𝑟𝑎𝑡𝐴𝑒𝑟𝑡 + 𝑆𝑜𝑙𝑎𝑟𝑡 + 𝑂𝑟𝑏𝑖𝑡𝑎𝑙𝑡      (A1.2) 

 

in which 𝑆𝑡𝑟𝑎𝑡𝐴𝑒𝑟𝑡, 𝑆𝑜𝑙𝑎𝑟𝑡, and 𝑂𝑟𝑏𝑖𝑡𝑎𝑙𝑡 are refer to the definitions in Appendix I, 

Table A1. 

 

As defined in Table Α1, world GDP is compiled as the sum of the national GDP of 

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, India, 

Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sri Lanka, Sweden, 

Switzerland, United Kingdom, United States. Data range from 1884 to 2006 and were 

obtained from Maddison (2008).  

 

 

 

 

 

 

 

 

 



 

 

Appendix II 

Table A2 – Data sources and definitions 

Variable name 
Short 

name 
Unit Range Data Source Link 

Radiative forcing of carbon dioxide 𝑅𝐹𝐶𝑂2𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of methane 𝑅𝐹𝐶𝐻4𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of dinitrogen oxide 𝑅𝐹𝑁20𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of CFC11 𝑅𝐹𝐶𝐹𝐶11𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of CFC12 𝑅𝐹𝐶𝐹𝐶12𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of anthropogenic 

sulphur emmisions 
𝑅𝐹𝑆𝑂𝑋𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of black carbon 𝑅𝐹𝐵𝐶𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of Solar Irradiance 𝑅𝐹𝑆𝑂𝐿𝐴𝑅𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Radiative forcing of stratospheric 

sulfates 
𝑅𝐹𝑉𝑂𝐿𝑡 Wm-2 1850-2011 Stern and Kaufmann (2014) http://www.sterndavidi.com/publication

s_type.html 

Temperature Anomaly 𝑡𝑒𝑚𝑝𝑡 oC 1850-2011 HADCRUT4 http://www.sterndavidi.com/publication

s_type.html 

World GDP GDP GK Dollars 1884-2006 Maddison (2009) http://www.ggdc.net/maddison/ 

 



 

 

From the above, the anthropogenic forcings (𝑧𝑡) series is defined as: 

 

𝑧𝑡 =  𝑅𝐹𝐶𝑂2𝑡 + 𝑅𝐹𝐶𝐻4𝑡 + 𝑅𝐹𝑁20𝑡 + 𝑅𝐹𝐶𝐹𝐶11𝑡 + 𝑅𝐹𝐶𝐹𝐶12𝑡 + 𝑅𝐹𝑆𝑂𝑋𝑡  (A2.1) 

where 𝑅𝐹𝐶𝑂2𝑡, 𝑅𝐹𝐶𝐻4𝑡, 𝑅𝐹𝑁20𝑡, 𝑅𝐹𝐶𝐹𝐶11𝑡, 𝑅𝐹𝐶𝐹𝐶12𝑡 and 𝑅𝐹𝑆𝑂𝑋𝑡 are as 

defined in Appendix II, Table A2 (this definition can also be found as the RFANTH 

variable in Stern and Kaufman, 2014). Similarly, the series for natural (non-

anthropogenic) forcings (𝑥𝑡) is defined as: 

 

𝑥𝑡 = 𝑅𝐹𝑆𝑂𝐿𝐴𝑅𝑡 + 𝑅𝐹𝑉𝑂𝐿𝑡 (A2.2) 

 

in which 𝑅𝐹𝑆𝑂𝐿𝐴𝑅𝑡 and 𝑅𝐹𝑉𝑂𝐿𝑡 refer to the definitions in Appendix II Table Α1. 

This definition corresponds to the RFNAT definition of natural forcings in Stern and 

Kaufman (2014). Real GDP is defined as in Appendix I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tables 

 

Notes: 

Sample period is 1881 to 2006 (126 years/observations). LB(Yt; n) is the Ljung-Box statistic for 

testing autocorrelation up to n lags (distributed as χ2 with n degrees of freedom), calculated for both 

the levels and the squares.   

** denotes significance at the 5% level.  

*** denote significance at the 1% level. 

 

 

 

 

 

 

 

 

 

 

Table 1. Preliminary statistics  

Panel a: Descriptive Statistics 

 tempt zt xt growtht 

Average 0.659 2.300 -0.267 2.788 

Stdev 11.019 1.345 0.576 3.276 

Min -26.000 -0.390 -3.630 -13.888 

Max 30.000 7.735 0.227 8.724 

LB(Yt; 5) 21.988*** 267.09*** 55.599*** 30.837*** 

LB( Yt
2; 5) 166.98*** 2.859 10.356 50.148*** 

Panel b: Unconditional Correlations 

 tempt zt xt growtht 

tempt 1 0.003 0.229 0.033 

zt  1 -0.272 0.021 

xt   1 0.035 

growtht    1 



 

 

Table 2. Estimated parameters for mean and variance equations  

Parameters STCC DSTCC 

 (1) (2) 

A. Mean Equation 1: tempt 

β0 3.055* 3.455** 

 
(1.756) (1.671) 

tempt-1 -0.266*** -0.284*** 

 
(0.089) (0.089) 

xt-1 2.854* 3.074** 

 
(1.584) (1.477) 

zt-1 -0.513 -0.575 

 
(0.618) (0.579) 

B. Mean Equation 2: zt     

δ0 0.188** 0.167** 

  (0.085) (0.084) 

tempt-1 0.006** 0.007** 

  (0.003) (0.003) 

zt-1 0.849*** 0.861*** 

  (0.038) (0.054) 

growthl,t-1 -0.032 -0.032 

  (0.025) (0.026) 

growthh,t-1 
0.037** 

(0.018) 

0.032*** 

(0.014) 

cg 0.560*** 0.560*** 

γg 25.62 27.44 

C. Conditional Variance equation 1: tempt 

ω1 12.55*** 13.37*** 

  (3.13) (3.29) 

α1 0.000 0.000 

  (0.337) (0.001) 

ξ1 0.897*** 0.892*** 

  (0.131) (0.143) 

D. Conditional Variance equation 1: zt   

ω2 0.038 0.038 

  (1.604) (2.162) 

α2 0.314 0.319 

  (0.193) (0.240) 

ξ2 0.543*** 0.536*** 

  (0.127) (0.203) 

Ε. Other Information     

L(θ) -570.0 -559.33 

Notes: Transition Variable is zt. *, **, *** indicate statistical significance at the 10%, 5% 

and 1% level respectively. Parentheses contain the standard errors, L(θ) is the log-

likelihood value. 
 



 

 

Table 3. Estimated parameters for conditional correlation 

Parameters   CCC STCC DSTCC 

  (1) (2) (3) 

Correlations: ρ(0) 0.061 -0.067 -0.074 

  
(0.624) (0.618) (0.623) 

 
ρ(1) - 0.544*** 0.521*** 

   
(0.254) (0.244) 

 
ρ(2) - 

 
0.809*** 

    
(0.073) 

Transition parameters: c(1) - 0.945*** 0.949*** 

   
(0.037) (0.025) 

 
c(2) -    - 2.395*** 

    
(0.011) 

 
γ(1) - 100 100 

   
  (.)   (.) 

 
γ(2) -    - 100 

    
  (.) 

Transition Variable in test: 
447.01 51.177        - 

(0.000) (0.000) 
 

Notes: Transition Variable is zt. *, **, *** indicate statistical significance at the 10%, 5% 

and 1% level respectively. Parentheses contain the standard errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4. Robustness tests results 

Parameters STCC DSTCC DSTCC DSTCC 

 (1)   (2)   (3)   (4) 

Transition Variable:      Time Time    zt Time 

Dataset:      Original Original 
Stern and 

Kaufmann 

Stern and 

Kaufmann 

Correlations: ρ(0) -0.073 -0.068 0.062 -0.183 

    (0.614) (0.621) (0.613) (0.596) 

  ρ(1) 0.414*** 0.378 0.466*** 0.192* 

    (0.159) (0.599) (0.128) (0.106) 

  ρ(2)   0.766*** 0.849*** 0.866*** 

      (0.098) (0.099) (0.011) 

Transition parameters: c(1) 0.567*** 0.537*** 0.537*** 0.538*** 

    (0.169) (0.005) (0.001) (0.027) 

  c(2)   - 0.964*** 0.955*** 0.954*** 

      (0.001) (0.001) (0.001) 

  γ(1)   100   100  100   100 

       (.)     (.)   (.)    (.) 

  γ(2)     -    100  100   100 

          (.)   (.)    (.) 

L(θ)  -571.2 -559.33 -1052.21 -1028.8 

Transition Variable in test: 
52.207 - - - 

(0.000) 
  

  

Notes:  

*, **, *** indicate statistical significance at the 10%, 5% and 1% level respectively. Parentheses 

contain the standard errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figures 

Figure 1 – Carbon Emissions - million tons carbon (1751-2009) 

 

Source: Boden et al (2016) 

 

 

 

 

Figure 2 – Change in Anthropogenic Forcings (1886-2006) 

 
Source: Miller et al (2014). 
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Figure 3 – Natural Forcings (1851-2012) 

 
Source: Miller et al (2014). 

 

Figure 4 – World GDP growth (1884-2006) 

 
Source: Maddison (2008) 
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Figure 5 – Temperature (sea-land-air combined) anomaly in Fahrenheit 

 
Source: GISTEMP Team 2016: GISS Surface Temperature Analysis (GISTEMP) and Hansen et al (2010). 

 

 

Figure 6 - 30-year rolling correlation of change in Anthropogenic Forcings and Temperature 
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Figure 7 – Double Smooth Transition Conditional Correlation 
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