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There is growing interest for using Spectral Vegetation Indices (SVI) derived by
Unmanned Aerial Vehicle (UAV) imagery as a fast and cost-efficient tool for plant
phenotyping. The development of such tools is of paramount importance to continue
progress through plant breeding, especially in the Mediterranean basin, where climate
change is expected to further increase yield uncertainty. In the present study, Normalized
Difference Vegetation Index (NDVI), Simple Ratio (SR) and Green Normalized Difference
Vegetation Index (GNDVI) derived from UAV imagery were calculated for two consecutive
years in a set of twenty durum wheat varieties grown under a water limited and
heat stressed environment. Statistically significant differences between genotypes were
observed for SVIs. GNDVI explained more variability than NDVI and SR, when recorded
at booting. GNDVI was significantly correlated with grain yield when recorded at booting
and anthesis during the 1st and 2nd year, respectively, while NDVI was correlated to
grain yield when recorded at booting, but only for the 1st year. These results suggest that
GNDVI has a better discriminating efficiency and can be a better predictor of yield when
recorded at early reproductive stages. The predictive ability of SVIs was affected by plant
phenology. Correlations of grain yield with SVIs were stronger as the correlations of SVIs
with heading were weaker or not significant. NDVIs recorded at the experimental site
were significantly correlated with grain yield of the same set of genotypes grown in other
environments. Both positive and negative correlations were observed indicating that
the environmental conditions during grain filling can affect the sign of the correlations.
These findings highlight the potential use of SVIs derived by UAV imagery for durum
wheat phenotyping under low yielding Mediterranean conditions.
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INTRODUCTION

Drought stress, as a combination of water deficit and high
temperature, is the main constraint limiting grain yield of
cereals in the Mediterranean basin (Araus et al., 2002). This
geographic area is expected to face more severe drought and
an increase in average temperature in the near future, due to
climate change (Giorgi and Lionello, 2008), increasing yield
uncertainty of rain-fed crops. Improving crop productivity
in drought-prone environments is a daunting challenge.
Extensive plant phenotyping and integration of cost effective
technologies are considered prerequisites to achieve progress
through plant improvement (Reynolds and Tuberosa,
2008). Furthermore, advances in phenotyping are likely to
be essential in capitalizing developments in conventional,
molecular and transgenic breeding, and ensuring genetic
improvement of crops for future food security (Araus and
Cairns, 2014).

Remote sensing methods hold great potential as a tool for:
(a) high throughput phenotyping for plant breeding (Deery
et al., 2014; Sankaran et al., 2015), (b) decision making for
precision agriculture (Zhang and Kovacs, 2012; Gago et al.,
2015), (c) predicting yields (Son et al., 2014), and (d) predicting
spatial field variability in experimental sites (Zaman-Allah
et al., 2015). Their usefulness rely on the fact that they
are non-destructive, non-invasive, fast and cost-efficient, well-
correlated with agronomical and important physiological crop
traits (Reynolds et al., 2015).

The most common procedure to extract information about
crops from remote sensing is through the estimation of Spectral
Vegetation Indices (SVI), which are based on formulations fitted
with the light reflected by the canopy at different wavelengths
(e.g., ratios and differences). The wavelengths are within the
visible and the near infrared electromagnetic spectrum. Several
SVIs have been proposed and are widely used, such as the
Normalized Difference Vegetation Index (NDVI), the Simple
Ratio (SR) and the Green Normalized Difference Vegetation
Index (GNDVI). The existence of genetic variability for SVIs was
reported by several authors (Babar et al., 2006b; Prasad et al.,
2007b; Gutierrez et al., 2010; Gizaw et al., 2016a). SVIs were
associated with important traits of cereal crops, such as grain
yield under stressed conditions (i.e., Bort et al., 2005; Lobos et al.,
2014; Bowman et al., 2015; Tattaris et al., 2016; Yousfi et al.,
2016). However, some authors argued that under severe stress
conditions, SVIs might be less efficient because genotypes are not
able to express their yield potentiality (Royo et al., 2003; Babar
et al., 2006c).

The majority of previous studies were conducted with
hand held sensors; however, ground measurements face several
constrains (Chapman et al., 2014; Deery et al., 2014; Gago
et al., 2015; Reynolds et al., 2015; Sankaran et al., 2015; Tattaris
et al., 2016). Some of these constrains can be eliminated using
low altitude aerial platforms. Zhang and Kovacs (2012) stated
that imagery taken by low altitude aerial systems is promising,
given its low cost of operation, high spatial and temporal

resolution, and its flexibility in image acquisition programming.
Measurements from trials can be taken when they are not
accessible to ground platforms, e.g., due to water-logged or
tall crops (Chapman et al., 2014). Other advantages are the
limited confounded effects caused by environmental drift due
to simultaneous data collection and more robust image analysis
tools (Reynolds et al., 2015; Tattaris et al., 2016), wider viewing
angle from the air, and absence of physical contact, hence no
mechanical distraction of the growing crop (Liebisch et al.,
2015). Although UAVs can carry lower payload than other aerial
vectors, they enable greater flight control and autonomy (Araus
and Cairns, 2014) and are less affected by the wind (Deery
et al., 2014; Tattaris et al., 2014). Recent studies revealed that
correlations between SVIs and agronomic traits derived from
airborne imagery are similar, or even stronger, than correlations
derived from ground measurements (Tattaris et al., 2014, 2016;
Zaman-Allah et al., 2015; Rasmussen et al., 2016). Measurements
can be taken by a wide array of different sensors including
conventional digital cameras (Araus and Cairns, 2014; Sankaran
et al., 2015), that have the advantage of low cost and low
weight (Hunt et al., 2010), and can be easily mounted on
UAVs and other aerial vectors (Ball and Konzak, 1993; Lelong
et al., 2008; Liebisch et al., 2015; Rasmussen et al., 2016). The
fast and cost efficient nature of UAV imagery allows multiple
measurements during grain filling. Multiple measurements are
necessary because the optimum recording stage is likely to vary
with experiment (i.e., Bort et al., 2005; Bowman et al., 2015).
The efficiency of SVIs is also affected by plant phenology, thus
multiple measurements allow the calculation of parameters that
are less related with phenology (Lopes and Reynolds, 2012;
Montazeaud et al., 2016).

The successful implementation of such technologies relies on
the characteristics of the UAV including stability, safety, control,
reliability, positioning, autonomy, sensor mount, controller,
sensor characteristics and image and data processing (Chapman
et al., 2014; Sankaran et al., 2015). It is then necessary to assess
the reliability of aerial remote sensing approaches with direct
plant-derived data (Lelong et al., 2008; Gago et al., 2015; Liebisch
et al., 2015). A number of studies investigated the potential
use of imagery derived from sensors mounted on UAVs and
other aerial vectors for plant breeding (Ball and Konzak, 1993;
Hoyos-Villegas and Fritschi, 2013; Chapman et al., 2014; Liebisch
et al., 2015; Zaman-Allah et al., 2015; Rutkoski et al., 2016)
and precision agriculture (Lelong et al., 2008; Hunt et al., 2010;
Khot et al., 2016; Rasmussen et al., 2016). Nevertheless, studies
conducted under severely stressed Mediterranean conditions are
very limited (Gonzalez-Dugo et al., 2015).

The main scope of the present work is to investigate the
usefulness of SVIs (NDVI, SR and GNDVI) derived from
UAV imagery for plant phenotyping under a water limited
and heat stressed Mediterranean environment. Durum wheat, a
predominant stable crop cultivated in the Mediterranean basin,
was selected for this study. A fast and cost effective method
to estimate SVIs by UAV mounted with digital cameras is
described. Genotypic effects of SVIs and agronomic and other
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physiological traits are presented. Correlations between SVIs and
photosynthetic pigments, SPAD measurements, grain yield and
other agronomic traits are discussed.

MATERIALS AND METHODS

Plant Material
Twenty durum wheat varieties (Triticum turgidum subsp. durum)
were selected for the present study. Six varieties were bred by
the Cypriot National Breeding Program and represent the main
commercial varieties cultivated in Cyprus for the last 40 years.
The other 14 varieties were released by other breeding programs
targeting areas with similar climatic conditions (Table 1).

Experimental Conditions and Field
Design
Experiments were conducted at Athalassa experimental station
(35◦08′N, 33◦24′E) for two consecutive growing seasons
(2012/2013 – year 1 and 2013/2014 – year 2). Athalassa has
shallow sandy clay loam soil and rather low precipitation during
crop cycle, resulting to drought stress during heading and grain
filling. In addition, the rather high day temperature in spring
and the frequent occurrence of extreme high temperatures during
grain filling very often result to heat stress conditions (Figure 1).
Crop failure and complete loss of yield frequently occurs in this
area.

The experimental design was a randomized complete block
with four and five replications the 1st year and the 2nd year,
respectively. Six row plots, 8 m long, spaced apart 0.175 m
were used. Seed rate was adjusted to 226 germinating seeds
m−2. Experiments were sown at the end of November and
60 Kg ha−1 of N2 and P2O5 were applied before sowing.

Weeds were chemically controlled at tillering (Atlantis R©, Bayer,
Illoxan R©, Bayer, Granstar R©, DuPont). Additional irrigation was
applied during booting (30 mm) in the 1st year, and during
tillering (50 mm) and booting (50 mm) in the 2nd year.
The plants received no supplementary irrigation or rainfall
from heading to physiological maturity during the 1st year,
while in the 2nd year received only a negligible amount of

rainfall when most of the plants had reached physiological
maturity.

Measurements of Agronomic Traits
Heading date was recorded when the ears of 50% of the tillers
had emerged from the flag leaf sheaths for approximately half
their length and was expressed as growing degree days from
emergence to heading. Physiological maturity was recorded when
50% of the spikes in the plot showed total loss of green color
and was expressed as growing degree days from heading to
physiological maturity. Growing degree days were calculated as
described by Aparicio et al. (2000). Plant height was recorded
as an average of three measurements per plot at physiological
maturity, excluding awns. Number of fertile tillers per m2 was
estimated at physiological maturity from four rows, each one 1 m
long, randomly selected on the 2nd and the 5th rows. Plants from
two rows, each one 1 m long, were randomly selected on the
2nd and 5th row and hand harvested to estimate the number
of seeds per spike. The plots were mechanically harvested on
May and grain yield was recorder at 12% moisture level. Before
harvesting, the two external rows and half meter from both ends
of the plots were discarded to avoid the boarding effect (Ceccareli
and Grando, 1996). Thousand kernel weight was calculated as the
mean weight of two samples of 200 seeds per plot and expressed
in g. Volume weight was measured with a 0.5L chondrometer
(Seedburo) and expressed as Kg hl−1.

Measurements of Photosynthetic
Pigments
Extraction of photosynthetic pigments, chlorophyll a, chlorophyll
b, carotenoids, anthocyanins was carried out as described by
Richardson et al. (2002), setting the extraction time to 2 h. Six
disks from three flag leaves were used for the extraction from
each experimental plot. The disks were sampled 5 and 10 cm
apart from the base and the tip of the flag leaf, respectively.
The area of each disk was 0.28 cm2. The concentrations of the
pigments (g L−1) were calculated according to the equations
used by Misra and Dey (2013), which are based on the data
published by Lichtenthaler (1987). Sampling was done at milk
stage. Chlorophyll content was also measured with a SPAD 502,

TABLE 1 | List of the durum wheat varieties used in the present study.

Name Year of release Country of registration/Origin Name Year of release Country of registration/Origin

Aronas 1977 Cyprus Pisti 2008 Greece

Mesaoria 1982 Cyprus Simeto 1988 Italy

Karpasia 1985 Cyprus Duilio 1984 Italy

Macedonia 1994 Cyprus Iride 1996 Italy

Ourania 2006 Cyprus Claudio 1998 Italy

Hekabe 2003 Cyprus Svevo 1996 Italy

Anna 2000 Greece Adnan2 ICARDA∗

Atlas 1995 Greece Omrabi5 ICARDA∗

Matt 2003 Greece Korifla ICARDA∗

Mexikali81 1985 Greece Waha ICARDA∗

∗ International Center for Agricultural Research in the Dry Areas.
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FIGURE 1 | Environmental conditions during the test years and normal conditions at Athalassa experimental station.

Konica, Minolta during the 2nd year. Data were recorded the
same dates as the UAV flights from six flag leaves randomly
selected from each plot. Two measurements were taken from each
leaf.

UAV Flights, Image Acquisition and
Processing
Spectral Vegetation Indices (Elvidge and Chen, 1995; Haboudane
et al., 2002) were measured using autonomous UAV. Two flights
were carried out during the 1st year when most varieties were at
booting and milk stages. The four flights carried out during the
2nd year were performed when most varieties were at heading,
anthesis, milk and dough stages.

The autonomous UAVs used for the present study were
the fixed wing SwingletCam from Sensfly (1st year) and the
multicopterHexa Y from 3D Robotics (2nd year). Both UAVs
are fully capable for completely autonomous flight from takeoff
to landing, requiring minimum expertise from the operator.
Cameras used on board the SwingletCam were provided by
SenseFly as part of the package. They were a Canon IXUS 220 HS
for RGB photos, and a modified near infrared Canon Powershot
ELPH 300 HS. Onboard the multicopter, the Canon IXUS 130 IS
was used to take RGB photos and a modified near infrared Canon
Powershot SX260 HS was used for near infrared photograph.
Two flights were performed, one right after the other, with the
exact same flight plan, but with different cameras. This method
suggests that RGB and NIF photos were not taken simultaneously
but with a time gap of 10 to 20 min, depending on plot dispersion.
A Leica Viva dual Global Positioning System (GPS) in Real
Time Kinematic (RTK) mode was used for ground control point
measurements. Prior to the flight, simple white A4 sheets were
laid down on the ground as control points.

Flights were conducted at varying heights from 72 up to
140 m and ground pixel sizes varying from 2.0 to 4.3 cm.
The variation of ground pixel size is of no importance since
the final orthophotos created, for every epoch, had 5.0 cm
pixel size, larger than the ones in the original photography.
Although the whole area of the crop fields could have been
included in a single aerial image from the aforementioned flying
height, using a 5.0 cm pixel size, was necessary to capture
multiple photos in order to create a Digital Elevation Model
(DEM), necessary for the orthorectification and georeferencing
process.

All photos were processed using Agisoft’sPhotoscan (version
1.0) to produce georeferenced real color and near infrared
orthophotos. During this process the original imagery is
orthorectified and georeferenced to ensure that each pixel, at
every epoch, of the real color and near infrared orthophotos
correspond perfectly to each other. As a byproduct of the process,
a DEM of the ground and the canopy of the crop surface was
produced. Slight color differentiation is likely to happen, even
among photos, from the same camera because of light conditions,
camera settings, sun reflection and camera angles. Mosaicking of
photos during the last phase of orthophoto mosaicking process,
produces misalignments and color shifting due to automatic
software color matching and correction. In order to avoid the
color changes, a single photo from each set (true color or
near infrared), covering the crop area was selected to create
the final orthophotos. Orthophotos were created with user
specified coordinates values, as to ensure full correspondence
over overlapping pixels. Final orthophotos had the exact same
number of pixels and three channels each (Figure 2 and
Supplementary Table S1 for the position of individual varieties
in Figure 2). After the creation of the true color and near infrared
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FIGURE 2 | Channel integration, from the two flights (booting and milk stages) over the 1st year. The last image on the right, shows all experiments’ masks
combined, similar in both cases.

orthophotos, they were loaded into Matlab software (version 12)
for further processing. Within Matlab they were stacked to form
a six channel photo, according to Figure 2. With arithmetical
functions among the pixels, several SVIs were calculated. Once
the multispectral orthophotos were created, masks over each
crop were manually created. The masks were concentrated over
the crop’s main body, excluding the crop’s edges where mixing
with the next variation might have caused misleading results.
Nevertheless, even by reducing extend and pixels of each plot,
an average of 9350 pixels were left per plot. Based on the
manually collected masks (Figure 2, on the far right), they
were combined in each experimental plot. The following indices
(Agapiou et al., 2012) were calculated for each experimental
plot:

NDVI = (RNIR − Rred)
/

(RNIR + Rred)

GNDVI =
(
RNIR − Rgreen

) / (
RNIR + Rgreen

)
SR = RNIR

/
Rred

The 2nd year, GNDVI was calculated only for the first two
flights, i.e., at heading and booting.

Statistical Analysis
Combined analysis over years was conducted for agronomic
traits considering genotypes and years as fixed factors. One-way

ANOVA was conducted for agronomic traits, SVIs, SPAD
measurements and photosynthetic pigments for each growth
stage and year. ANOVA was also conducted for SVIs and
SPAD measurements considering all the growth stages together
during each year. Pearson correlation coefficients on genotype
means were estimated between agronomic traits, photosynthetic
pigments, SPAD measurements and SVIs. Correlations between
NDVIs, SPAD values, and chlorophyll b recorded at Athalassa
with grain yield recorded in experiments with the same set of
genotypes grown at different locations (Achelia and Dromolaxia
experimental stations, Cyprus) are also presented. Principal
Component Analysis was performed using the direct oblimin
rotation method to explore relationships among variables.
The PCs with eigenvalues greater than 1 were selected and
coefficients greater than 0.3 are shown. Stepwise regression
analysis was performed on genotype means to investigate SVIs,
SPAD measurements and photosynthetic pigments contribution
to grain yield. All analyses were carried out using SPSS (IBM,
SPSS ver 22).

RESULTS

Genotypic Effects
Analysis of Variance F-values for different traits among genotypes
including means, maximum and minimum values, and the
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Coefficient of Variations (CVs) for the 2 years and the combined
analysis over years for the agronomic traits are shown in Table 2.
There was genetic variability between genotypes, except for
grain yield in the 2nd year and for the combined analysis
over years. Environmental conditions affected seeds per spike,
volume weight, thousand kernel weight and growing degree days
to heading. The interactions were weaker or non-significant.
Statistically significant differences between genotypes were also
observed for SVIs, except for SR at milk stage the 2nd year, SPAD
values at all stages and for photosynthetic pigments (Table 3).
The SVIs differences were more profound during the 1st year.
NDVI and SR explained more variation at milk stage, contrary to
GNDVI, which explained more variation at booting stage during
the 1st year.

Normalized Difference Vegetation Indices and SR means
were lower during the 1st year, particularly at milk stage. Since
different digital cameras were used during the 2nd year, there
is variation among various digital cameras due to the different
sensor sensitivity at various spectral reflectances and the different
lens filters used. For example, Li et al. (2010) found close
relations between vegetation indices derived from three different
digital cameras and canopy cover, however, the magnitude of the
estimated canopy cover varied with camera. Thus, the results of
the two years were analyzed independently.

There were significant differences between genotypes and
growth stages when measurements from all stages were analyzed
together for SVIs and for SPAD (Table 4). Both SVIs and
SPAD values were progressively reduced as plants were reaching

maturity. However, differences between milk and dough stages
were not significant for NDVI and SR in the 2nd year.
Furthermore, SPAD values at heading and anthesis did not
differ significantly. Significant interactions between genotypes
and growth stages were observed for NDVIs and GNDVIs the 1st
year and for SPAD values the 2nd year.

Associations between SVI Indices and
Photosynthetic Pigments
Correlations between SVIs, SPAD values and photosynthetic
pigments during the 1st year and the 2nd year, respectively, are
shown at Supplementary Tables S2, S3. There were very strong
correlations between SVIs recorded at each growth stage and at
different growth stages. SPAD values at milk stage were highly
correlated with SPAD values at dough stage. Weaker, although
significant correlations were also observed between SPAD values
at heading and SPAD values at anthesis and at milk stage. SPAD
values at milk and dough stages showed significant correlations
with SVIs. The correlations were stronger at dough stage. There
were significant correlations between chlorophyll pigments and
carotenoids with SVIs with the exception of GNDVI at heading
for the 2nd year. Anthocyanin correlations were non-significant
or were weak. SPAD values were significantly correlated with
chlorophyll pigments and carotenoids, except from SPAD at
anthesis.

There were significant correlations between SVIs recorded
at milk stage the 1st year with SVIs, SPAD values at milk and

TABLE 2 | Analysis of Variance F-values for genotypes, Coefficients of Variation (CV), means, minimum (Min) and maximum (Max) values of grain yield (GRYLD), number
of tillers per m2 (NTLSM), seeds per spike (SPS), volume weight (VW), thousand kernel weight (TKW), plant height (PH), growing degree days to heading (GDDHD) and
growing degree days from heading to physiological maturity (GDDPM).

1st year

GRYLD (Kg/ha) NTLSM SPS VW (Kg/hl) TKW (g) PH (cm) GDDHD GDDPM

F genotype 2.443∗∗ 4.371∗∗∗ 15.814∗∗∗ 13.973∗∗∗ 20.537∗∗∗ 5.202∗∗∗ 50.912∗∗∗ –

CV 16.59 14.55 8.20 2.11 6.39 5.10 1.13 –

Mean 1723 252.71 27.60 66.55 23.56 78.93 1275 –

Min 1247 206.79 22.42 62.35 19.24 68.88 1203 –

Max 2126 337.50 38.81 71.05 33.50 87.25 1398 –

2nd year

F genotype 1.162 2.772∗∗ 14.051∗∗∗ 5.709∗∗∗ 4.010∗∗∗ 5.111∗∗∗ 23.542∗∗∗ 3.128∗∗∗

CV 25.72 15.00 11.42 2.87 12.19 5.30 1.33 7.47

Mean 1651 258.49 24.00 70.34 27.03 81.30 1360 558.40

Min 995 172.38 18.13 65 21.29 70.73 1296 443.58

Max 2013 312.50 36.53 75 35.35 89.80 1437 606.33

Combined analysis

F genotype 1.260 4.679∗∗∗ 25.267∗∗∗ 11.461∗∗∗ 8.868∗∗∗ 6.751∗∗∗ 43.288∗∗∗ –

F year 0.017 0.288 50.007∗∗∗ 78.109∗∗∗ 13.216∗∗∗ 0.019 540.147∗∗ –

F genotype x year 1.768∗ 1.919∗ 2.717∗∗∗ 1.754∗ 1.307 1.657 2.344∗∗ –

Mean 1685 255.79 25.69 68.57 25.41 80.19 1320 –

CV 21.82 15.62 9.91 2.89 11.70 5.71 1.52 –

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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TABLE 3 | Analysis of Variance F-values for genotypes, Coefficients of Variation (CV), means, minimum (Min) and maximum (Max) values for SVIs, SPAD values and
photosynthetic pigments.

1st year 2nd year 1st year 2nd year 2nd year

NDVI booting NDVI heading NDVI anthesis NDVI milk NDVI milk NDVI dough SPAD heading SPAD anthesis

F genotype 8.086∗∗∗ 2.464∗∗ 2.245∗∗ 9.937∗∗∗ 2.042∗ 2.261∗∗ 9.036∗∗∗ 5.447∗∗∗

CV 4.00 8.39 12.32 27.32 14.72 8.54 3.02 3.26

Mean 0.49536 0.50460 0.41274 0.11633 0.30512 0.28772 55.89 56.42

Min 0.43407 0.44609 0.34481 0.04668 0.23476 0.25044 51.68 51.94

Max 0.55610 0.56472 0.50076 0.25669 0.38853 0.34017 59.82 59.06

SR booting SR heading SR anthesis SR milk SR milk SR dough SPAD milk SPAD dough

F genotype 6.009∗∗∗ 3.036∗∗∗ 2.171∗ 8.417∗∗∗ 1.659 2.083∗ 5.297∗∗∗ 4.144∗∗∗

CV 6.46 10.25 13.41 7.46 12.24 6.02 14.44 37.07

Mean 3.09 3.16 2.54 1.27 1.95 1.82 45.86 25.96

Min 2.61 2.67 2.12 1.10 1.63 1.67 28.69 10.59

Max 3.68 3.67 3.11 1.70 2.33 2.04 59.51 49.86

1st year

Anthocyanin Chlorophyll Chlorophyll Carotenoids Total chlorophyll GNDVI GNDVI

(g/l) b (g/l) a (g/l) (g/l) (g/l) booting milk

F genotype 6.001∗∗∗ 13.956∗∗∗ 14.118∗∗∗ 11.084∗∗∗ 14.208∗∗∗ 15.346∗∗∗ 9.942∗∗∗

CV 10.40 19.61 17.47 13.65 17.62 2.72 4.92

Mean 0.004234 0.001045 0.008761 0.004207 0.009806 0.26742 0.21992

Min 0.003419 0.000385 0.003651 0.002515 0.004036 0.24178 0.18053

Max 0.005427 0.001770 0.014283 0.006068 0.016053 0.29556 0.25394

2nd year

Anthocyanin Chlorophyll Chlorophyll Carotenoids Total chlorophyll GNDVI GNDVI

(g/l) b (g/l) a (g/l) (g/l) (g/l) heading anthesis

F genotype 2.293∗∗ 4.318∗∗∗ 4.945∗∗∗ 3.492∗∗∗ 4.885∗∗∗ 2.440∗∗ 2.078∗

CV 15.30 27.64 24.46 20.94 24.77 8.36 10.67

Mean 0.003599 0.001121 0.007922 0.002952 0.009044 0.23066 0.21854

Min 0.002999 0.000721 0.005149 0.002026 0.005871 0.19939 0.18468

Max 0.004529 0.001934 0.013303 0.004187 0.015237 0.25480 0.24731

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

dough stages and photosynthetic pigments recorded the 2nd
year (Supplementary Table S4). SVIs recorded at booting the 1st
year were significantly correlated only with chlorophyll pigments,
carotenoids and SPAD values at heading, anthesis and milk
stages.

Associations with Agronomic Traits
Significant correlations were obtained between grain yield with
NDVIs and GNDVIs at booting the 1st year and with GNDVIs at
anthesis the 2nd year (Table 5). The correlations were higher the
1st year, when genetic variation in grain yield was also significant.

TABLE 4 | Analysis of Variance F-values for genotypes, growth stage, genotype × growth stage, Coefficient of Variation (CV) and means of NDVI, SR, GNDVI and SPAD
values.

1st year 2nd year

NDVI SR GNDVI NDVI SR GNDVI SPAD

F genotype 9.012∗∗∗ 3.363∗∗∗ 9.224∗∗∗ 4.866∗∗∗ 4.434∗∗∗ 3.282∗∗∗ 4.937∗∗∗

F growth stage 5302.67∗∗∗ 2011.58∗∗∗ 494.78∗∗∗ 316.69∗∗∗ 267.18∗∗∗ 11.91∗∗ 240.90∗∗∗

F genotype x stage 3.324∗∗∗ 1.425 1.775∗ 0.263 0.433 0.222 1.514∗

CV 10.69 11.67 5.51 14.02 14.74 10.92 18.91

Mean 0.30585 2.18 0.24367 0.37755 2.37 0.22460 46.03

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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TABLE 5 | Pearson correlations between SVIs and grain yield at different growth
stages.

Year Growth stage Correlations

1st year NDVI booting 0.526∗

GNDVI booting 0.564∗∗

SR booting 0.461

NDVI milk stage 0.418

GNDVI milk stage 0.419

SR milk stage 0.384

2nd year NDVI heading 0.426

GNDVI heading 0.318

SR heading 0.410

NDVI anthesis 0.438

GNDVI anthesis 0.464∗

SR anthesis 0.413

NDVI milk stage 0.402

SR milk stage 0.382

NDVI dough stage 0.361

SR dough stage 0.346

∗p < 0.05, ∗∗p < 0.01, n = 20.

According to stepwise regression results, GNDVI at booting and
at anthesis explained 31.8 and 21.5% of grain yield variability
for the 1st year and the 2nd year, respectively. Standardized beta
coefficients were positive in both cases (Table 6).

The correlations between NDVIs at different growth stages,
SPAD values at milk and dough stages, and chlorophyll b
with grain yield, from the same set of genotypes grown in
different years and locations, are presented in Table 7. Negative
correlations were obtained between NDVI and grain yield in
Dromolaxia for two consecutive years. Negative correlations
between NDVI and grain yield were also observed in Achelia for
one year while for the other year, NDVI was positively correlated.
The best recording stage varied with experiment. Significant
negative correlations were also obtained between SPAD values
and chlorophyll b with grain yield, although in most cases were
weaker than the NDVI.

Principal Component Analysis was conducted to investigate
the combinations of traits that best explained the variability.
The first three PCs explained 78.46 and 79.97% of the total
variance during the 1st and 2nd years, respectively (Table 8).
For both years, the PC1 was strongly and positively associated
with chlorophyll b, carotenoids, anthocyanin, SVIs at milk
stage, growing degree days to heading and volume weight. The
associations of SVIs recorded at earlier stages with PC1 were

TABLE 6 | Stepwise regression between grain yield and anthocyanin, carotenoids,
chlorophyll b, NDVI and GNDVI at booting and milk stage for the 1st year and
anthocyanin, carotenoids, chlorophyll b, SPAD at milk and dough stages, NDVI at
heading and milk stage and GNDVI at heading and anthesis for the 2nd year.

Variable Model Standardized F

Year enter R2 Beta Change Probability

1st year GNDVI booting 0.318 0.564 8.384 0.010

2nd year GNDVI anthesis 0.215 0.464 4.938 0.039

weaker, especially the 2nd year. Grain yield was positively related
to PC1 the 1st year and to PC2 for both years. Strong and positive
associations with PC2 were also observed for number of tillers
per m2 for both years and weaker for SVIs at booting, heading
and anthesis, and plant height. Growing degree days to heading
were negatively related to PC2 the 1st year. Growing degree days
from heading to physiological maturity were positively related to
PC2 the 2nd year.

Implications with Phenology
In order to examine the implications of plant phenology in the
ability of NDVI to predict yield, Pearson correlations between
grain yield and NDVI were plotted against the correlations
between growing degree days to heading and NDVI for each
year and recording stage (Figure 3). Each point represents the
correlations when all genotypes were taken into account, and
when the two and four late heading genotypes were excluded.
There were significant correlations between NDVI measurements
and grain yield at all growth stages and years when the
two and the four late heading genotypes were excluded. The
correlations between grain yield and NDVI were stronger when
the correlations between NDVI with growing degree days to
heading were weaker.

DISCUSSION

There is growing interest for using SVIs derived by UAV
imagery as a fast and cost efficient tool for plant phenotyping.
The development of such tools is of paramount importance to
continue progress through plant breeding, especially in drought
prone and heat stressed environments where climate change is
expected to increase yield uncertainty. Studies conducted under
Mediterranean environment are limited and the intent of the
present study is to elucidate the usefulness of such tools under
these harsh environmental conditions.

Genotypic Effects
Grain yields were similar (Aparicio et al., 2000; Gutierrez et al.,
2010; Lobos et al., 2014) or lower from average yields reported
in experiments under stressed conditions for rainfed cereal crops
(Babar et al., 2006c; Lopes and Reynolds, 2012; Bowman et al.,
2015; Gizaw et al., 2016a) indicating the severe stress that plants
experience during their growing cycle.

The significant differences between genotypes for SVIs are in
line with previous reports (i.e., Aparicio et al., 2000; Babar et al.,
2006c; Prasad et al., 2007b; Gutierrez et al., 2010). The differences
in the present study were more profound during the 1st year.
Regarding the 2nd year, the discriminating ability of SVIs was
affected by the higher experimental error due to the unusual
drought conditions during the vegetative stage. Soil heterogeneity
becomes more apparent under drought conditions (Masuka et al.,
2012) increasing the experimental error and undermining field
screenings, including phenotyping with SVIs (Zaman-Allah et al.,
2015).

During the 1st year, there was less variation among genotypes
for NDVI and SR at booting. This is in agreement with the
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TABLE 7 | Pearson correlations between NDVI at different stages, SPAD at milk and dough stages and chlorophyll b with grain yield from the same set of genotypes
grown at different years and locations (DR12, Dromolaxia 2011/12; AX12, Achelia 2011/12; ATH13, Athalassa 2012/2013; DR13, Dromolaxia 2012/13; AX13, Achelia
2012/13; ATH14, Athalassa 2013/2014).

DR 12 AX12 ATH13 DR13 AX13 ATH14

NDVI booting ATH13 ns 0.557∗ – ns ns ns

NDVI milk ATH13 ns ns – −0.450∗ −0.478∗ ns

Chlorophyll b ATH13 ns ns – ns −0.491∗ ns

NDVI heading ATH14 −0.615∗∗ ns ns −0.536∗ ns –

NDVI anthesis ATH14 −0.547∗ ns ns –0.574∗∗ ns –

NDVI milk ATH14 −0.537∗ ns ns −0.653∗∗ ns –

NDVI dough ATH14 −0454∗ ns ns −0.660∗∗ −0.449∗ –

SPAD milk ATH14 ns ns ns ns −0.613∗∗ –

SPAD dough ATH14 ns ns ns −0.543∗ −0.641∗∗ –

Chlorophyll b ATH14 ns ns ns −0.569∗∗ −0.566∗∗ –

ns (not significant), ∗p < 0.05, ∗∗p < 0.01, n = 20.

findings of Royo et al. (2003), Babar et al. (2006b), and Prasad
et al. (2007a). The maximum Leaf Area Index (LAI) for wheat
grown under Mediterranean conditions occurs at booting. The
usefulness of SR and NDVI for estimating grain yield and other
important agronomic traits is limited to LAI values lower than
3 to 4 (Aparicio et al., 2000, 2002). Contrary, GNDVI explained
more variation at booting during the 1st year indicating that it is
less affected by high LAI values. Gitelson et al. (2002) reported
that Rred sensitivity was at least three times lower than Rgreen
when vegetation fraction was more than 60%, thus vegetation
indices using green wavelength are likely to perform better at high
LAI values.

The variability explained by the growth stage was much higher
than the variation explained by genotypes for SVIs and SPAD
values, as deduced in Table 4. These findings are in agreement
with the results of Aparicio et al. (2002), Bort et al. (2005),
Babar et al. (2006b,c), and Prasad et al. (2007b). SVI mean values
progressively reduced from booting to dough stage as was shown
in previous studies (i.e., Babar et al., 2006a; Prasad et al., 2007a;
Gizaw et al., 2016b). The non-significant reduction from milk to
dough stage in this study is justified by the fact that severe leaf
senescence was present when plants were at milk stage.

Previous studies reported significant interactions between
genotypes and growth stages under irrigated and stressed

TABLE 8 | Pattern matrix of the PCA analysis.

Pattern matrix

1st year 2nd year

PC1 PC2 PC3 PC1 PC2 PC3

Chlorophyll b 0.963 Carotenoids 0.938

Carotenoids 0.952 Chlorophyll b 0.933

NDVI milk 0.921 Anthocyanin 0.887

GNDVI milk 0.895 VW 0.837

Anthocyanin 0.861 0.313 SPAD milk 0.784

GDDHD 0.781 −0.389 NDVI milk 0.625 0.360 −0.356

VW 0.778 0.383 NTLSM 0.924

GNDVI booting 0.716 0.370 −0.382 GRYLD 0.849

NDVI booting 0.657 0.478 PH 0.764

NTLSM 0.917 0.322 GDDPM 0.560 0.679

GRYLD 0.417 0.645 GNDVI heading 0.332 −0.784

PH −0.377 0.452 TKW 0.520 0.765

SPS −0.888 GDDHD 0.561 −0.699

TKW 0.491 0.682 NDVI heading 0.336 0.416 −0.623

GNDVI anthesis 0.361 0.473 −0.586

SPS −0.584

Cumulative variance (%) 50.01 66.52 78.46 Cumulative variance (%) 46.56 66.33 79.97

PCA was based on agronomic traits, anthocyanin, carotenoids, chlorophyll b, NDVI and GNDVI at booting and milk stage for the 1st year and on the agronomic traits,
anthocyanin, carotenoids, chlorophyll b, SPAD at milk stage, NDVI at heading and milk stage and GNDVI at heading and anthesis for the 2nd year. GRYLD, Grain yield;
NTLSM, number of tillers per m2; SPS, seeds per spike; VW, volume weight; TKW, thousand kernel weight; PH, plant height; GDDHD, growing degree days to heading;
GDDPM, growing degree days from heading to physiological maturity.
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FIGURE 3 | Correlation coefficients between growing degree days to heading with NDVI (PGDD) plotted against coefficients between grain yield and NDVI (PGRY)
for each year and recording stage. Each point represents the correlations when all genotypes were taken into account (n = 20), when the two late heading genotypes
were excluded (n = 18) and when the four late heading genotypes were excluded (n = 16).

conditions (Babar et al., 2006b,c; Prasad et al., 2007b; Gutierrez
et al., 2010; Gizaw et al., 2016a). Those authors pointed out
that the interactions of growth stages and indices indicate that
care must be taken to identify a suitable growth stage at which
the indices will be applied to discriminate most effectively
among genotypes in breeding trials. In the present study, the
high correlation between SVIs recorded at different stages in
the 2nd year is consistent with the non-significant interactions
between growth stage and genotypes. During the 1st year, the
correlations between SVIs recorded at booting and milk stage
were weaker, justifying the existence of significant interactions.
The interactions observed during the 1st year can be attributed
to the noise induced to the data from the 1st recording stage at
booting, when LAI values were at maximum. SR is less affected
by the saturation effect of LAI greater than 3 compared with
NDVI (Serrano et al., 2000; Aparicio et al., 2002) which might
explain the lack of significant interactions for SR. Aparicio et al.
(2002) reported significant interactions between genotypes and
recording stage for NDVI but not for SR. Montazeaud et al.
(2016) stated that NDVI saturation is not easily attained in the
rainfed conditions of low yielding environments. During the 2nd
year, measurements were taken at heading and onward, when
NDVI saturation effect becomes less significant, reducing the

noise in the data. These results indicate that, under severe stress,
and for SVI measurements taken after heading, the interactions
between growth stage and genotypes are likely to be low or
non-significant.

Associations between SVI Indices and
Photosynthetic Pigments
Several authors stressed the strong relationship between SVIs
(i.e., Bort et al., 2005; Gizaw et al., 2016b). Previous studies
reported associations between SVIs recorded at different growth
stages in the same environment and between SVIs recorded at
different environments under more favorable (Babar et al., 2006b;
Prasad et al., 2007b) and stressed conditions (Babar et al., 2006c).
The results of this study are in agreement with the previously
mentioned observations.

The strong positive correlations between SVIs with SPAD
values and photosynthetic pigments confirm the close
associations between SVIs and canopy greenness. Serrano
et al. (2000) also observed significant correlations between
NDVI/SR and chlorophyll a. Non-significant or very weak
correlations were observed between SVIs and SPAD values
at heading and anthesis, contrary to the significant positive
correlations at milk and dough stages, due to SPAD values above

Frontiers in Plant Science | www.frontiersin.org 10 June 2017 | Volume 8 | Article 1114

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01114 June 23, 2017 Time: 17:38 # 11

Kyratzis et al. SVIs of Durum Wheat under Stress

50, which are less reliable (Minolta SPAD502 plus manual1). This
is further justified by the weak or non-significant correlations
between SPAD values at heading and anthesis with the values
recorded at milk and dough stages. Previous studies found non-
significant or very weak correlations between SPAD and NDVI
measurements for bread and durum wheat under Mediterranean
conditions (Yousfi et al., 2016) or negative correlations for
maize (Liebisch et al., 2015). Contrary, in the present study,
positive significant correlations were found between SPAD
values with SVIs at both milk and dough stages. This is in line
with the significant positive correlations between SPAD values
and photosynthetic pigments. Similarly, Babar et al. (2006a)
found positive correlations between reflectance spectral indices
(RARS), which are associated with photosynthetic pigments and
SPAD measurements.

Associations with Agronomic Traits
The significant correlations between grain yield and SVIs are
in agreement with previous studies proposing SVIs as a mean
for estimating important traits such as grain yield under heat
and/or drought conditions (Aparicio et al., 2000; Bort et al.,
2005; Gutierrez et al., 2010; Lobos et al., 2014; Tattaris et al.,
2014, 2016; Bowman et al., 2015; Zaman-Allah et al., 2015; Gizaw
et al., 2016a,b). The weak or non-significant correlations of grain
yield with SPAD values and photosynthetic pigments confirm
the superiority of SVIs compared to SPAD measurements as
predictors of grain yield under stressed conditions (Lopes and
Reynolds, 2012; Yousfi et al., 2016).

Other authors postulated that SVIs are likely to be more
successful under moderate rather than under severe stressed
conditions (Babar et al., 2006c), where genotypes are able
to express their yield potential (Royo et al., 2003). These
studies were conducted with hand-held sensors. Gonzalez-Dugo
et al. (2015) reported non-significant correlations between grain
yield and vegetation indices under Mediterranean conditions,
derived by hyper spectral camera mounted on manned aircraft.
In their study, there was only one sampling date during
the critical period of grain filling. Our results indicate that
SVIs derived by UAV imagery are likely to be useful in
severe stressed Mediterranean conditions, with average grain
yield as low as 1700 Kg/ha. In drought stressed conditions,
small variability in soil depth and texture have increasingly
large effects on variability (Ceccareli and Grando, 1996),
thus whole plot measurements derived by UAV imagery are
likely to be more representative than hand-held measurements.
This also justifies the higher correlations between SVIs and
grain yield compared with SPAD values and photosynthetic
pigments. Multiple sampling dates are necessary from booting
to physiological maturity since significant correlations with grain
yield might be obtained only in one growth stage that can
vary with experiment. The need for multiple measurements
during the crop cycle was already stressed by several authors.
For example, repeated measurements on the same genotypes
over different growth stages accumulate information on the

1https://www.konicaminolta.com/instruments/download/catalog/color/pdf/spad
502plus_catalog_eng.pdf

respective health of genotypes through time, thus average
values across growth stages can give better predictions of yield
(i.e., Babar et al., 2006c; Prasad et al., 2007b; Gizaw et al.,
2016b).

An association between indices measured in one site and the
yield of the same genotypes in another site, would mean that the
indices could be used to predict yield in diverse environments.
Significant correlations between indices measured in one
environment and yield measured in a different environment
were previously reported (Bort et al., 2005; Gutierrez et al.,
2010; Gizaw et al., 2016a). In the present study, both positive
and negative significant correlations were observed between
NDVI and grain yield for the same set of genotypes grown at
different environments (Table 7). Negative correlations between
NDVI and grain yield were observed when negative correlations
between grain yield and growing degree days to heading
were recorded. Positive correlations were observed when the
correlations between grain yield and growing degree days to
heading were non-significant (data not shown). The majority
of the previous studies reported positive relations between
grain yield and vegetation indices. For example, Lobos et al.
(2014) and Gizaw et al. (2016b) reported positive correlations
between NDVI and grain yield under sever water stress, and
non-significant correlations between grain yield and days to
heading. However, negative correlations were reported under
severe stress conditions, where negative correlations between
SVIs and grain yield coexisted with negative correlations between
days to heading and grain yield (Lopes et al., 2014; Rutkoski
et al., 2016). Early maturing genotypes are likely to be more
productive in stressed environments (Bort et al., 2005). The
superiority of early maturing genotypes in their study justified
the negative associations between NDVI and SR at the latest
recording stage. They concluded that the changes in the values
and the signs of the correlations between grain yield and
reflectance indices reflect genotypic differences in response
to high temperature and drought during late grain filling.
The results of the present study are in agreement with their
findings.

The variation explained by the first three PCA components
was similar to the variation recently reported by Gizaw et al.
(2016b). The first component was highly correlated with SVIs
and volume weight for both years. Other studies showed less
consistent correlations between SVIs and volume weight. For
example, Arguello et al. (2016) reported volume weight and
NDVI in the same clustering of a PCA analysis conducted
under water logged conditions, but not under normal conditions.
Gizaw et al. (2016b) did not find any close association between
volume weight and vegetation indices. In the present study,
the consistent correlations between SVIs and volume weight
can be attributed to the fact that late heading genotypes had
higher volume and higher SVI values. Number of tillers per m2,
plant height, thousand kernel weight and number of seeds per
spike, were less correlated to SVIs. Previous studies also reported
lower and inconsistent relations between spectral reflectance
indices and the above mentioned agronomic traits (Aparicio
et al., 2002; Babar et al., 2006b; Lobos et al., 2014; Gizaw et al.,
2016b).
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Implications with Phenology
The implications between plant phenology and SVIs can
affect the correlations between SVIs and agronomic traits,
particularly grain yield (Lopes and Reynolds, 2012; Tattaris et al.,
2016). Principal component analysis showed a consistent strong
correlation between SVIs and growing degree days to heading,
as has been previously reported (Lopes et al., 2014; Lobos et al.,
2014; Elazab et al., 2015; Gizaw et al., 2016b). Plant phenology
affected the ability of SVI to predict yield, as it is deduced by the
negative trend between correlations of NDVI with grain yield and
correlations between NDVI with growing degree days to heading.

Rate of senesce, estimated as the slope of the NDVI decay
against thermal time, and stay green, as an estimation of NDVI
at physiological maturity, can give an independent measurement
of stay green without the confounding effect of phenology (Lopes
and Reynolds, 2012). In the present study, the rate of senescence
and stay green were not related with grain yield (data not
shown). On the contrary, NDVI values at the intercept of the
slope with the Y axis, which estimates NDVI values at the
end of booting-beginning of heading, were significantly and
positively correlated with grain yield (r = 0.583, p < 0.01). The
correlations were similar when the four late heading genotypes
were excluded (r = 0.545, p < 0.05). The intercept NDVI was
not correlated with growing degree days to heading implying
that it is not related with phenology. Montazeaud et al. (2016)
reported positive correlations between grain yield and maximum
greenness, as estimated by NDVI measurements. Maximum
greenness coexists with booting, when water is relatively available
and the temperatures are still not high.

In stressed environments, biomass accumulation before
heading is associated with grain yield as it is related to
carbohydrate remobilization to grain during the grain filling
stage (Villegas et al., 2001). Significant correlations between
SVIs and biomass have been reported (Aparicio et al., 2002;
Babar et al., 2006a). The positive correlation with grain yield
that was observed for GNDVI recorded at booting the 1st year,
and for intercept NDVI at the 2nd year might be associated
with genotypes that manage to accumulate high biomass before
heading. The SVI measurements at this stage were independent
of phenology as it is shown by the non-significant correlations
with days to heading. SVI measurements at later stages were
depended from phenology and they were not associated with
grain yield because late heading genotypes had higher SVI values,
but they were less productive. Lopes et al. (2014) confirmed that
NDVI measurements after booting are related to plant greenness
and selecting for high NDVI after booting, late flowering
genotypes will be selected which are low yielding. When late

heading genotypes were excluded, high positive correlations were
obtained implying that within a narrower range of heading,
stay-green genotypes were more productive. In environments
where days to heading were negatively associated with grain
yield, significant negative correlations were obtained between
NDVIs and grain yield. SVIs are predictors of canopy greenness
(Aparicio et al., 2000), thus early maturing genotypes were
associated with low SVI values.

The results of the present work highlight the potential use
of SVIs derived by UAV imagery for durum wheat phenotyping
under low yielding Mediterranean conditions. The optimum
recording stage varied with experiment. The ability of SVIs
as yield predictors was affected by plant phenology. The
implications between plant phenology and SVIs derived by UAV
imagery should be investigated in future studies, employing
parameters that are less related to plant phenology. Other indices,
such as water indices (Babar et al., 2006c; Gutierrez et al., 2010)
and/or RGB indices (Elazab et al., 2015; Vergara-Diaz et al.,
2016) were found to be superior compared to SVIs in field
phenotyping. Additional research should be conducted in the
future, addressing the performance of these indices derived from
UAV imagery.
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