A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells

Cite as: Phys. Fluids 32, 103103 (2020); https://doi.org/10.1063/5.0022493
Submitted: 21 July 2020. Accepted: 09 September 2020. Published Online: 05 October 2020

Pavlos S. Stephanou

ARTICLES YOU MAY BE INTERESTED IN

Locomotion of a rotating cylinder pair with periodic gaits at low Reynolds numbers
Physics of Fluids 32, 103102 (2020); https://doi.org/10.1063/5.0022681

On the flow characteristics in different carotid arteries
Physics of Fluids 32, 101902 (2020); https://doi.org/10.1063/5.0022092

A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood
Physics of Fluids 32, 094111 (2020); https://doi.org/10.1063/5.0022501
A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells

Cite as: Phys. Fluids 32, 103103 (2020); doi: 10.1063/5.0022493
Submitted: 21 July 2020 • Accepted: 9 September 2020 • Published Online: 5 October 2020

Pavlos S. Stephanou

AFFILIATIONS
Department of Chemical Engineering, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus

Author to whom correspondence should be addressed: pavlos.stefanou@cut.ac.cy. Tel: +357-25-002394. Fax: +357-25-002668

ABSTRACT

Red blood cells (RBCs) in physiological conditions are capable of deforming and aggregating. However, both deformation and aggregation are seldom considered together when modeling the rheological behavior of blood. This is particularly important since each mechanism is dominant under specific conditions. To address this void, we herein propose a new model that accounts for the deformability of red blood cells, by modeling them as deformed droplets with a constant volume, and of their aggregation, by properly characterizing the network formed by red blood cells under small shear rates. To derive the model, we employ non-equilibrium thermodynamics that allows us to consistently couple the two mechanisms and guarantees model admissibility with the thermodynamic laws. Relative to our previous model, which addresses the rheological behavior of non-aggregating deformable red blood cells, one additional structural variable, λ, to properly characterize the network formed by RBCs, and another additional parameter, ε, that quantifies the relative importance between the regeneration/buildup and flow-induced breakup of the network, are considered here. The new model predicts a yield shear stress, in accord with experimental data, but also predicts non-vanishing yield normal stresses. Although no rheological measurements of yield normal stresses of blood have been reported in the literature, the recent measurement of yield normal stresses of other yield stress fluids indicates their potential existence in blood as well. We show that the new model is in complete accord with the experimental rheological behavior of normal blood in both steady-state and transient (step-change in shear-rate) simple shear.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022493

I. INTRODUCTION

It is today well known that two important determinants of whole blood viscosity, i.e., red blood cell (RBC) deformability and aggregation, must be carefully regulated to avoid an unusual hemodynamical behavior in the circulatory system. Many diseases, such as cardiovascular ones, diabetes,` inherited sickle-cell disease,' and malaria,' can lead to a hardening of RBCs and more intense aggregation to occur, leading to an increase in blood viscosity compared to healthy individuals. Given that diseases of the circulatory system are (in 2017) the deadlest diseases in the EU,' and possibly globally, it is very important to be able to perform in silico simulations in order to accurately describe the complex rheological behavior of blood in our circulatory system. Given the advances made in performing flow simulations of blood nowadays, such a task is certainly not daunting. This would allow for an early detection of circulatory diseases and for the more effective development of cardiovascular devices, such as heart valves or stents.'

Our circulatory system is primarily comprised of two interconnected subsystems with varied functionality: macrocirculation, i.e., blood flows through large elastic arteries and transports oxygen and metabolites, and microcirculation, i.e., nutrient-rich blood flows from the left ventricle to the small arteries such as prearterioles, arterioles, and capillaries, which help in distributing blood to the organs and body tissues. Normal blood is a highly complicated, viscoelastic and thixotropic, non-Newtonian fluid consisting of blood cells suspending in plasma (a Newtonian fluid, with a typical viscosity of about 1.2 mPa s at 37 °C) composed mostly of water and proteins. In addition to RBCs, blood cells include white blood cells and platelets, with RBCs consisting the vast majority (by ~98%); thus, the
When suddenly stepping up or down the shear rate, the viscosity of blood shows that it diminishes at higher shear rates and noted evidence that suggests that blood exhibits a very broad spectrum of relaxation times. In addition to steady-state rheology, we also need to examine the time-dependent rheology of whole blood. This is particularly important as blood in circulation experiences rapid and cyclic changes from low- to high-shear flow conditions during the cardiac cycle. Besides, thixotropy is inherently linked with time-dependent changes. Thixotropy is defined, according to IUPAC, as the continuous decrease of the viscosity with time when flow is applied to a sample that has been previously at rest and the subsequent recovery of viscosity in time when the flow is discontinued. For example, when suddenly stepping up or down the shear rate, the viscosity transients obtained reflect the changes in the microstructure. In particular, the growth of the viscosity after a sudden decrease in the shear rate is an indication of thixotropy and could be employed to test the applicability of thixotropic models. It is, thus, apparent that if we aspire to accurately simulate the, both steady-state and time-dependent, rheological behavior of whole blood in both macrocirculation and microcirculation, a constitutive model addressing aggregability, deformability, and thixotropy is certainly needed.

From a modeling standpoint, a plethora of constitutive models have been developed aiming to address the peculiar rheological behavior of blood. As mentioned above, under certain conditions, e.g., in large arterial blood vessels, blood can be considered as a Newtonian fluid. In this case, a considerable amount of work has been devoted to unveiling the dependency of the viscosity on the hematocrit, the plasma viscosity, and the maximum packing fraction. When shear-thinning needs to be considered, several generalized, steady-state models can be used such as the Cross, Carreau, Carreau-Yasuda, Quemada, Herschel–Bulkley (see, e.g., Valant et al. where the regularized version of the Herschel–Bulkley constitutive equation is employed as proposed by Papapanastasiou), and Casson models, with the last three allowing for the prediction of a yield stress. More recently, some of these have been used as the basis to provide a more elaborate dependency on various important parameters, such as the generalization of the Casson model by Apostolidis and Beris who considered both the viscosity and yield stress of blood to depend on the hematocrit, the temperature, and the fibrinogen concentration. Viscoelasticity has also been considered via the use of the Oldroyd-B and the Yeleswarapu models as well as the generalized Oldroyd-B and Maxwell constitutive models developed by Anand and Rajagopal, on thermodynamic principles. More recently, other viscoelastic models that are routinely employed to address the viscoelasticity of polymeric materials have also been employed to address the viscoelasticity of blood, such as the Giesekus and Phan-Thien Tanner ones. However, perhaps the most sophisticated model is the generalized Maxwell-type model of Owens, who considered blood as an ensemble of rouleaux, each rouleau modeled as an elastic dumbbell. He accounted for the rouleaux aggregation and disaggregation by employing ideas from the temporary polymer network theory, whereas the kinetic rates needed were obtained by simply fitting experimental data. We have recently proposed a modified version of the Owens model by using the generalized bracket formalism of non-equilibrium thermodynamics (NET), which has the appealing advantage of deriving the aggregation/disaggregation kinetic rates in a self-consistent manner, thus avoiding the need to resort to phenomenological expressions altogether. We treated rouleaux formation and dissociation as a set of two-way (reversible) reactions, each characterized by a forward and a reverse rate.

The viscosity of normal human blood, i.e., blood with a hematocrit value of about 42%–47%, at steady-state exhibits three distinct regions: a lower Newtonian region (reaching the low-rate viscosity, η_0, an upper Newtonian region (reaching the high-rate viscosity, $\eta_\text{0 Ms})$, and the intermediate region where the viscosity is decreasing with increasing shear rate, i.e., the blood is shear thinning. This non-Newtonian behavior of blood is attributed to the aggregation of RBCs at lower shear rates, while as the shear rate increases, the RBC deformability becomes more and more influential and eventually predominant after about 10^{-1} s. Both factors, aggregability and deformability, affect blood rheology under different conditions. Large arterial blood vessels (with a diameter larger than 1 mm), large shear rates occur leading to the destruction of any aggregates, and thus, the deformation of single RBCs is the only factor affecting blood viscosity. Deformation also plays a predominant role in capillaries, i.e., vessels that are smaller than the RBCs at rest, where the RBCs must deform in order to enter. On the other hand, blood is noted to be non-Newtonian due to RBC aggregation in regions where low shear exists, such as near bifurcations, anastomoses, stenoses, and aneurysms, but also in the neural network. Finally, when one is interested in the steady-state rheological behavior of blood, we also need to consider that blood is noted to be viscoelastic, first reported by Thurston who showed that the elastic properties of whole human blood decrease with increasing shear rate. He later conducted oscillatory experiments of whole blood to determine their viscoelastic behavior and showed that it diminishes at higher shear rates and noted evidence that suggests that blood exhibits a very broad spectrum of relaxation times.

In addition to steady-state rheology, we also need to examine the time-dependent rheology of whole blood. This is particularly important as blood in circulation experiences rapid and cyclic changes from low- to high-shear flow conditions during the cardiac cycle. Besides, thixotropy is inherently linked with time-dependent changes. Thixotropy is defined, according to IUPAC, as the continuous decrease of the viscosity with time when flow is applied to a sample that has been previously at rest and the subsequent recovery of viscosity in time when the flow is discontinued. For example, when suddenly stepping up or down the shear rate, the viscosity
constitutive models that must be employed in order to address the complicated rheological behavior of normal blood are the thixo-eloasto-viscoplastic ones. However, in all these models, the structural variables employed were not directly related to the microstructural characteristics of blood. For example, Stephanou and Georgiou had considered a contravariant conformation tensor to characterize the deformation of the underlying structure, whereas Tsimouri et al., following Owens, modeled each rouleau as an elastic dumbbell characterized by a contravariant conformation tensor. Furthermore, all aforementioned models characterize the deformation of single RBCs using a spring, whereas it is more natural, as described above, to model single RBCs as volume-preserving droplets (when incompressibility applies). As such, and despite the evidence highlighting the significance of accurately predicting the deformability of RBCs, constitutive models properly accounting for the deformability of RBCs are absent in the literature.

To remedy the latter shortcoming, we have recently proposed a detailed model wherein RBCs are described by a conformation tensor constrained to have a constant determinant, which has been used in the past to model emulsions. However, that approach can only address non-aggregating blood, which severely limits its applicability. As mentioned in the Conclusions of Ref. 37, to account for the aggregation of RBCs occurring in normal blood, we may follow one of two possible methodologies: The first includes allowing the RBCs to aggregate by considering a set of two-way aggregation/disaggregation reactions, following our own recent work. Then, we may identify the structural variable for single RBCs to be the determinant-conserving conformation tensor \(S \) introduced in Ref. 37 instead of the unconstrained conformation tensor \(C \) introduced in Ref. 30. Despite the fact that this methodology would allow us to address the deformability of RBCs and to properly address the shear-rate dependency of the rouleaux size distribution function without phenomenological modeling, it would not allow for the prediction of a yield stress. On the other hand, the second methodology, which is the one to be followed in this work, follows closely Stephanou and Georgiou and dictates the use of one additional scalar structural variable, \(\lambda \), to properly characterize the network formed by RBCs under small shear rates. However, contrary to the work of Stephanou and Georgiou, we should herein consider a determinant-constrained conformation tensor \(S \).

In our present work, as in our previous works, we employ the generalized bracket formalism of NET to derive the new hemorheological model so as to properly address three key issues: (a) the selection of the proper state variables, (b) the construction of both the Poisson and dissipation brackets, and (c) the specification of the system’s Hamiltonian. The use of a NET formalism guarantees that the constitutive model will be, by construction, consistent with the laws of thermodynamics. Up to date, NET has been employed to address several micro-structured systems, such as, but not limited to, liquid crystals,38–41 immiscible complex fluids,42–44 blood,45,46 polymer melts and solutions,47,48,49,50 micellar systems,51–53 micellar suspensions,54–57 drilling fluids,58 and thixotropic fluids.59

The rest of the paper is organized as follows: in Sec. II, we present the derivation of the new constitutive model by extending the one of Stephanou and Tsimouri and provide the governing equations in a non-dimensional form along with a detailed description of the model parameters. We then proceed with Sec. III where the parameterization of the new model is presented, followed by a comparison against the experimental measurements of Sousa et al. and Bureau et al. in Sec. IV. Our paper concludes with Sec. V where we summarize our work and provide a brief discussion of future plans.

II. DERIVATION OF THE NEW MODEL

A. The vector of state variables

We consider a homogeneous, isothermal, and incompressible fluid, meaning that both the total mass density, \(\rho \), and the entropy density (or temperature) are excluded from the vector of state variables. Following previous works, in order to describe the rheology and microstructure of RBC suspensions, we consider RBCs as emulsions with droplet morphology by using a constrained contravariant second-rank tensor, \(S \), such that det\(S \) is equal to the volume of a RBC. We also define the dimensionless tensor \(\hat{S} = \frac{S}{(\det S)^{1/3}} \) so that \(\det \hat{S} = 1 \). The square root of the eigenvalues of the volume-preserving tensor \(S \) corresponds to the dimensionless semi-axes of the RBCs, with the semi-axes having been made dimensionless using the equilibrium RBC equivalent radius. The simplest possible approximation to the shape of RBCs is spheroidal (i.e., ellipsoids of which the lengths of two axes are the same) so that at equilibrium the tensor \(\hat{S} \) is equal to \(\text{diag}(a^3, a^3, c^3) \), where \(a \) and \(c \) are the principal semi-axes of the RBC (see Fig. 1 of Ref. 37), whose determinant is \(\det \hat{S} = \det S_{eq} = a^4 c^2 = \left[3V_{RBC}/(4\pi)\right]^2 \); since the volume of a spheroid is \(V_{RBC} = (4\pi/3)a^3c \), then \(S_{eq} = \hat{S}_{eq}/(\det \hat{S}_{eq})^{1/3} = \text{diag}\left[(a/c)^{2/3}, (a/c)^{2/3}, (c/a)^{1/3}\right] \). Considering the typical values \(2a = 7.5 \mu m \) and \(V_{RBC} = 90 \mu m^3 \), we must consider \(c = 3.06 \mu m \). Next, to account for the tendency of RBCs to aggregate in normal blood, we here employ one additional scalar structural variable, \(\lambda \), to properly characterize the network formed by RBCs under sufficiently small shear rates. When the network is fully formed, then \(\lambda = 1 \), while in a completely broken state, i.e., when only single RBCs remain, \(\lambda \) vanishes.

Finally, we consider the momentum density \(\mathbf{M} \) as the hydrodynamic variable. Overall, the vector \(\mathbf{x} \) of state variables is expressed as \(\mathbf{x} = [\mathbf{M}, S, \lambda] \).

B. The Hamiltonian of the system

The mechanical part of the system’s Hamiltonian is given by

\[
H_m = K_m(\mathbf{x}) + A(\mathbf{x}),
\]

where

\[
K_m(\mathbf{x}) = \int \frac{M^2}{2p} dV.
\]

The first term on the right-hand side of Eq. (1) represents the kinetic energy of the system, \(K_m(\mathbf{x}) \), given by Eq. (2), whereas \(A(\mathbf{x}) \) represents the system’s Helmholtz free energy, for which we consider here the following form:

\[
A(C, \lambda) = H_T \int C^2 dV + H_T \int \left(\lambda \ln \lambda - \lambda + 1\right) dV.
\]
where \(I^2_C\) is the second invariant of the tensor \(S\) such that \(S = C \cdot S_{eq} \Rightarrow C = S \cdot S_{eq}^{−1}\), i.e., \(C_{eq} = I\) (see Ref. 37). \(H_t\) is the hematocrit, and \(G = Eqy/V_{RBC} = \frac{3}{2}(y/e^2)\left[1 + (e^{-1} - e)\tanh^{-1} e\right]\) is the surface energy density, where \(Eqy = 2\pi a^2\left[1 + (e^{-1} - e)\tanh^{-1} e\right]\) is the spheroid area with \(e^2 = 1 - (c/a)^2\), and \(y\) is the surface tension. The first integral in Eq. (3a) is the simplest possible expression for the interfacial energy of the RBC.\(^{32}\) Note that, in general, this term should be a function of only the first two invariants of \(C\) (since the third, the determinant, is constant), and more general expressions could be used, such as the one proposed by Mwasame et al.\(^{31}\) or the one proposed by Skalak et al.\(^{60}\) to specifically address the deformation of the RBC membrane. Despite the availability of such more elaborate free energy expressions, we choose to consider in our present work the simplest possible expression. The second integral indicates the ideal entropy of mixing for segments that are not associated with the network with an extra term added to ensure that the mixing free energy maximizes under no flow conditions, i.e., when \(\lambda = 1\).\(^{33}\) Following Mwasame et al.,\(^{31}\) the surface energy density for spherical at equilibrium droplets is given as \(\Gamma = 3y/R\), where \(R\) is the radius of the droplet. Considering that the value of the surface energy density is in general applicable only for dilute RBC suspensions, we here consider\(^{37}\)

\[
y = f_0y_0 \Rightarrow \Gamma = f_0\Gamma_0 = \frac{3y_0}{R}, \tag{3b}
\]

where \(y_0\) is the surface tension in infinite dilution. Although Stephanou and Tsimouri\(^{34}\) had considered \(f_0\) to be a function of various parameters to match the model prediction of the zero-rate shear viscosity with the expected experimental result, here we choose to consider it as an adjustable parameter such that a matching cannot take place as the zero-rate shear viscosity of normal blood is difficult to be measured.

C. The Poisson and dissipation brackets

Following Edwards et al.\(^{31}\) and Beris and Edwards,\(^{31}\) the Volterra derivative of the constrained tensor \(S\) related to the unconstrained tensor \(B\) via \(S = B/(\det B)^{1/3}\) is given as

\[
\frac{\delta}{\delta B_{ab}} = \frac{1}{(\det B)^{1/3}} \left(\delta_{ab} \delta_{pq} - \frac{1}{3} \frac{\delta}{\delta B_{pq}} B_{ab} B_{pq} \right) \delta_{pq}. \tag{4}
\]

For a system described by an unconstrained conformation tensor \(B\), the expression for the Poisson bracket is well known (see, e.g., Refs. 31 and 43):

\[
\{F, G\}_S = - \int \left[\frac{\delta F}{\delta M_j} \nabla_b \left(M_j \frac{\delta G}{\delta M_b} \right) - \frac{\delta G}{\delta M_j} \nabla_b \left(M_j \frac{\delta F}{\delta M_b} \right) \right] dV \tag{5a}
\]

Note that here, and throughout this work, Einstein’s summation convention for repeated Greek indices is employed. Then, by using Eq. (4) in the Poisson bracket, we get\(^{31,37-41}\)

\[
\{F, G\}_S = - \left[\int \left(\frac{\delta F}{\delta M_j} \nabla_b \left(M_j \frac{\delta G}{\delta M_b} \right) - \frac{\delta G}{\delta M_j} \nabla_b \left(M_j \frac{\delta F}{\delta M_b} \right) \right) dV + \int \left(\frac{\delta F}{\delta M_j} \nabla_b \left(\frac{\delta G}{\delta M_b} \right) - \frac{\delta G}{\delta M_j} \nabla_b \left(\frac{\delta F}{\delta M_b} \right) \right) dV + \int \left(\frac{\delta G}{\delta M_j} \nabla_b \left(\frac{\delta F}{\delta M_b} \right) - \frac{\delta F}{\delta M_j} \nabla_b \left(\frac{\delta G}{\delta M_b} \right) \right) dV \right. \tag{5b}
\]

Furthermore, we consider the following expression for the Poisson bracket associated with the scalar structural variable \(\lambda\):\(^{31,44}\)

\[
\{F, G\}_\lambda = - \left[\int \left(\frac{\delta F}{\delta \lambda} \nabla_b \left(\lambda \frac{\delta G}{\delta \lambda} \right) - \frac{\delta G}{\delta \lambda} \nabla_b \left(\lambda \frac{\delta F}{\delta \lambda} \right) \right) dV + \int \left(\frac{\delta F}{\delta \lambda} \nabla_b \left(\frac{\delta G}{\delta \lambda} \right) - \frac{\delta G}{\delta \lambda} \nabla_b \left(\frac{\delta F}{\delta \lambda} \right) \right) dV + \int \left(\frac{\delta G}{\delta \lambda} \nabla_b \left(\frac{\delta F}{\delta \lambda} \right) - \frac{\delta F}{\delta \lambda} \nabla_b \left(\frac{\delta G}{\delta \lambda} \right) \right) dV \right]. \tag{6b}
\]

The last integral in Eq. (6b) introduces a general coupling between the scalar structural variable and the velocity gradient through the tensor \(g\).\(^{34}\) The Poisson bracket of the system is then simply \(\{F, G\} = \{F, G\}_S + \{F, G\}_\lambda\).

Next, for the dissipative bracket, we again choose a form that is frequently employed,\(^{31,37,43}\)

\[
\{F, G\}_\text{diss} = - \int \left[\frac{\delta F}{\delta \Lambda_{ab}} \Lambda_{ab} \frac{\delta G}{\delta \Lambda_{ab}} dV - \int \left(\frac{\delta F}{\delta \Lambda_{ab}} \Lambda_{ab} \frac{\delta G}{\delta \Lambda_{ab}} dV + \int \left(\frac{\delta F}{\delta \Lambda_{ab}} \Lambda_{ab} \frac{\delta G}{\delta \Lambda_{ab}} dV - \int \left(\frac{\delta F}{\delta \Lambda_{ab}} \Lambda_{ab} \frac{\delta G}{\delta \Lambda_{ab}} dV \right) \right) \right] \tag{7}
\]

Note that here, and throughout this work, Einstein’s summation convention for repeated Greek indices is employed. Then, by using Eq. (4), the corresponding terms of the dissipative bracket

\[
\text{Eq. (4)}
\]

The first two integrals on the right-hand side of Eq. (7) account for relaxation effects for an unconstraint conformation tensor \(B\), proportional to a fourth-rank relaxation tensor \(\Lambda\), and the scalar structural variable \(\lambda\). The third integral will allow us to introduce RBC tumbling by considering non-affine deformation,\(^{37}\) whereas the last integral, proportional to the fourth-rank tensor \(Q_{ab}^\Lambda\), aims to add an additional Newtonian-like rheological contribution to the stress tensor. Note that the subscript “diss,” meaning “no entropy production correction,” is added to the dissipative bracket to indicate that this dissipative bracket is without terms involving Volterra derivatives with respect to the entropy density.\(^{31}\) These terms are unimportant when one considers (as we do here) isothermal systems. Finally, using Eq. (4), the corresponding terms of the dissipative bracket

\[
\text{Eq. (4)}
\]
related to the determinant-constrained tensor S are obtained as

$$
[F, G]_{muc} = - \int \left(\delta_{\alpha\beta} \delta_{\gamma\delta} - \frac{1}{3} S_{\alpha\beta} S_{\gamma\delta} \right) \frac{\delta F}{\delta S_{\alpha\beta}} \Lambda_{\alpha\beta\gamma\delta} \left(\delta_{\epsilon\mu} \delta_{\eta\nu} - \frac{1}{3} S_{\epsilon\mu} S_{\eta\nu} \right)
$$

where $\Lambda_{\alpha\beta\gamma\delta} = \frac{1}{3} S_{\alpha\beta} S_{\gamma\delta} - S_{\alpha\beta} S_{\gamma\delta}$ and $L_{\alpha\beta\gamma\delta} = \frac{1}{3} S_{\alpha\beta} S_{\gamma\delta} - S_{\alpha\beta} S_{\gamma\delta}$. Then,

$$
S_{\alpha\beta}[1] = - \left(\Lambda_{\alpha\beta\gamma\delta} - \frac{1}{3} S_{\alpha\beta} S_{\gamma\delta} \right) \frac{\delta H_m}{\delta S_{\alpha\beta}} - \frac{1}{3} S_{\alpha\beta} H_m S_{\gamma\delta}
$$

and the material time derivative,

$$
\frac{D \lambda}{D t} \equiv \frac{\partial \lambda}{\partial t} + u \cdot \nabla \lambda.
$$

Also, $\kappa = (\nabla u)^T$ is the transposed velocity gradient tensor. Finally, the stress tensor is given as

$$
\sigma_{\alpha\beta} = 2 \left(S_{\rho\sigma} \frac{\partial A}{\partial S_{\rho\sigma}} - \frac{1}{3} S_{\rho\sigma} S_{\gamma\delta} \frac{\partial A}{\partial S_{\gamma\delta}} \right) + Q_{\alpha\beta\gamma\delta} \nabla \gamma \mu,
$$

where $Q_{\alpha\beta\gamma\delta} = \frac{\eta \omega}{\tau H \lambda}$ and $L_{\alpha\beta\gamma\delta} = \frac{\xi}{2} \left(S_{\alpha\beta} \delta_{\gamma\delta} + S_{\alpha\beta} \delta_{\gamma\delta} + S_{\gamma\delta} \delta_{\alpha\beta} + S_{\gamma\delta} \delta_{\alpha\beta} \right)$. The first expression includes the infinite-rate viscosity, i.e., the viscosity of blood at large shear rates, which depends on both Ht and λ_η via $\eta_{\omega} = \eta P(Ht, \lambda_\eta)$. In the dilute limit, this should be equal to the expression due to Taylor,

$$
P(Ht, \lambda_\eta) = 1 + Ht T(\lambda_\eta), \quad T(\lambda_\eta) = \frac{5 \lambda_\eta + 2}{2(\lambda_\eta + 1)}.
$$

However, we are here interested in larger (physiological) values of the hematocrit, and thus, we need to employ a generalized version of this expression. We do this by following Krieger and Dougherty

$$(13)$$

where H_{m} is the maximum packing hematocrit. Note that this expression as $Ht \to 0$ boils down to Taylor’s expression. For random close packing of monodisperse rigid spherical particles, the maximum packing volume fraction is equal to 0.637; however, for spheroids, such as RBCs, this is expected to be larger. Indeed, Doney et al. showed that the maximum packing volume fraction depends on the object’s shape: for spheres, they found it to be 0.64, whereas for oblate spheroids (M&M candies), it is 0.68. Motivated from this, they performed computer simulations and noted that the maximum packing volume fraction depends on the aspect ratio for both prolate and oblate spheroids. Since RBCs can be approximated as oblate spheroids with a disk equal to approximately $2a = 6 \mu m - 9 \mu m$ and a thickness between $2c = 1.84 \mu m$ and $2.84 \mu m$, meaning that the aspect ratio is between $c/a = 0.2$ and 0.5, their simulation results indicate that the maximum packing volume fraction should be between 0.64 and 0.69. However, we should also consider the fact that RBCs are deformable, which would suggest that H_m should be even higher. This is verified by the rheological measurements of Tao and Huang who showed that their measured data are in favor of Eq. (13) with $H_m = 0.72$ and $T(\lambda_\eta) = 2.3$ that is reasonably close to the value of 2.1667 obtained for the average value of $\lambda_\eta = 5$; for completeness, we mention that the value $T(\lambda_\eta) = 2.3$ is obtained when $\lambda_\eta = 9$ that is close to the upper limit of λ_η. In the following, we will assume that $H_m = 0.72$ unless otherwise stated.

The second expression in Eq. (11) is the usual expression proposed by Beris and Edwards, which gives rise to the Gordon–Schowalter or Johnson–Segalman time derivative and has also been employed by Mwasame et al. Here ξ is the non-affine or slip parameter. This parameter has been related to chain tumbling (rotation) in polymer melts and concentrated polymer solutions but also to RBC tumbling. Therefore, when a non-vanishing non-affine parameter is employed, the RBCs would at small shear rates deform and, once a critical shear rate is exceeded, tumble at larger shear rates, as noted experimentally. In general, its value should be rather small. As also mentioned by Stephanou and Tsimouri, there is no experimental evidence suggesting the consideration of a non-vanishing parameter ξ; however, Mwasame et al. have shown that, in the case of spherical emulsions at equilibrium, this parameter must be a specific function of the viscosity ratio λ_η in order for their model to recover the asymptotic constitutive equations of up to first-order capillary number microscopic theories. Although such theoretical evidence is absent in the case of emulsions that are ellipsoidal at equilibrium, as we approximate the simplest equilibrium shape of RBCs, we still consider a non-vanishing non-affine parameter that, however, we shall treat simply as a fitting constant. Finally, for the relaxation tensor A and for A^λ, we consider the simplest possible expressions,

$$
A_{\alpha\beta\gamma\delta} = \frac{3(1 - \lambda)}{4\pi H \tau^2} \left(S_{\alpha\beta} \delta_{\gamma\delta} + S_{\alpha\beta} \delta_{\gamma\delta} \right),
$$

$$
A^\lambda = \frac{1}{\tau^2 \lambda}.
$$

Phys. Fluids 32, 103103 (2020); doi: 10.1063/5.0022493

Published under license by AIP Publishing
where τ_s is a characteristic relaxation time related to the deformability of the RBC, and τ_1 is a characteristic relaxation time related to how easily the RBC network can be reconstructed once destroyed due to the applied stresses. Following Mwasame et al., $\tau_s = \eta_s R/\rho_0$, where $R = 3V_{bac}/E_{eq}$ is the equivalent RBC radius at equilibrium.

D. The resulting evolution equations

Following the usual procedure, we obtain the following expressions for the evolution equations for the constrained conformation tensor S and the scalar structural variable λ:

$$\dot{S}_{\alpha\beta} = \frac{3(1-\lambda)}{I^2} \left[-S_{\alpha\beta} S_{\gamma\delta} S_{\gamma\delta} - \left(\frac{I^2_1}{3} S_{\alpha\beta} - \frac{2I^2_1}{3} \delta_{\alpha\beta} \right) \right],$$

(15a)

and the expression for the extra stress tensor,

$$\sigma_{\alpha\beta} = \frac{6n_s Ht_f (1-\xi)}{I^2} \left(\frac{I^2_1}{3} S_{\alpha\beta} S_{\gamma\delta} S_{\gamma\delta} - \frac{2I^2_1}{3} \delta_{\alpha\beta} \right),$$

(15b)

where the left-hand side defines the Johnson–Segalman time derivative,

$$\dot{S}_{\alpha\beta} = \frac{3(1-\lambda)}{I^2} \left[-S_{\alpha\beta} S_{\gamma\delta} S_{\gamma\delta} - S_{\alpha\beta} S_{\gamma\delta} S_{\gamma\delta} - \left(\frac{I^2_1}{3} S_{\alpha\beta} - \frac{2I^2_1}{3} \delta_{\alpha\beta} \right) \right].$$

(16)

We select to make the stress tensor dimensionless with η_s/τ_s, so that

$$\dot{S}_{\alpha\beta} = \frac{6n_s Ht_f (1-\xi)}{I^2} \left(\frac{I^2_1}{3} C_{\alpha\beta} C_{\gamma\delta} C_{\gamma\delta} - \frac{2I^2_1}{3} \delta_{\alpha\beta} \right),$$

(17)

where $\dot{S} = \dot{\gamma}$, is the dimensionless rate-of-strain tensor. In the following, we will employ the dimensionless parameter $\epsilon = \tau_1/\tau_s$. As will be shown, in the limit $\epsilon \to \infty$, this model boils down to the one presented by Stephanou and Tsimouri for non-aggregating blood. As shown in the Appendix, the new model is thermodynamically admissible. In the following, we consider only homogeneous and rectilinear flows.

III. PREDICTIONS OF THE NEW MODEL

In this section, we present the predictions of the new model in shear flow and how they compare with available experimental data. The results have been obtained by numerically solving the constitutive model [Eqs. (15a) and (15b)] using MATLAB.

A. Steady-state predictions

Figure 1 shows the variation of the relative infinite-rate viscosity, n_∞/n_0, given by Eq. (13), as a function of Ht for different values of the parameters λ_n and H_{tn}. When the ratio of the internal and external viscosities, λ_n, increases, the relative viscosity curve shifts to higher values, but as the maximum packing hematocrit is reached this deviation diminishes. It should be noted that even the curve as $Ht \to 0$ shifts to larger Ht values as it follows Taylor’s theory: $\eta(Ht, \lambda_n) = 1 + Ht T (\lambda_n)$, which is accurate up until, approximately, $Ht \approx 0.1$. On the other hand, by increasing the maximum packing hematocrit, the predictions are noted to be the same up until $Ht \approx 0.4$ and shift toward larger Ht values afterward. Overall, this behavior is in accord with available rheological measurements.

In Figs. 2 and 3, we depict the predictions for the dimensionless shear stress [panel (a)] and shear viscosity [panel (b)], while keeping $\lambda_n = 2.5$, $Ht = 0.4$, and $H_{tn} = 0.72$ (Fig. 2) and $\xi = 0.01$ and $H_{tn} = 0.72$ (Fig. 3) fixed. We note in Fig. 2(a) that as the parameter ϵ decreases, a yield stress, τ_y, is predicted at small shear rates, which is seen to shift to larger values (see the inset). Obviously, in the limit $\epsilon \to \infty$, the yield stress would vanish, and the model boils down to the one presented by Stephanou and Tsimouri (see also Ref. 33). On the other hand, by increasing the ξ parameter from 0.01 to 0.1 (which is admittedly a relatively large value), a slight shift to smaller values for both the shear stress [Fig. 2(a)] and the shear viscosity [Fig. 2(b)] at small shear rates is noted. Furthermore, by increasing the parameter f_0, the yield shear stress is seen to increase; this is the expected behavior as the exhibition of a yield stress originates from the two first terms of Eq. (16). However, at large shear rates, all curves, irrespective of the values of the parameters ϵ and ξ, asymptotically reach the Newtonian contribution $P(Ht \lambda_n) C_0$ [given by the dotted line in panel (a)]. Overall, the shear stress is what we should expect: a yield shear stress is predicted when a finite, non-vanishing ϵ parameter is considered [Figs. 2(a) and 3(a)], as expected from rheological measurements of blood at physiological conditions, the dependence from the ξ parameter seems not to be significant but it would be valuable in numerical simulations in order to consider RBC tumbling (see also Fig. 6), and by increasing the value of the hematocrit, the shear stress curve, and thus the viscosity curve as well, shifts to larger values in agreement with the rheological data of Chien et al., whereas at large enough shear rates, the viscosity eventually reaches a second Newtonian plateau as dictated by numerous rheological data.

Then, in Figs. 4 and 5, we depict the model predictions for the two dimensionless normal stress differences [panel (a)] and the two dimensionless normal stress coefficients [panel (b)]. We note that in addition to the prediction of a yield first normal stress difference,
FIG. 2. Model predictions for the dimensionless (a) shear stress and (b) shear viscosity as a function of Ca for various values of the parameters ξ, f_0, and ε, while keeping $\lambda_\eta = 2.5$, $H_t = 0.4$, and $H_m = 0.72$ fixed. The dotted line in panel (a) depicts the Newtonian contribution of $P(H_t\lambda_\eta)Ca$.

FIG. 3. Model predictions for the dimensionless (a) shear stress and (b) shear viscosity as a function of Ca for various values of the parameters ε, H_t, and λ_η while keeping $\xi = 0.01$, $f_0 = 1$, and $H_m = 0.72$ fixed.

FIG. 4. Model predictions for the dimensionless (a) first normal stress difference and (b) first normal stress coefficient as a function of Ca for various values of the parameters ξ and ε.

FIG. 5. Model predictions for the negative dimensionless (a) second normal stress difference and (b) second normal stress coefficient as a function of Ca for various values of the parameters ξ and ε.
N_{1,y}$, when a finite value of the parameter ε is considered, a negative yield second normal stress difference, $N_{2,y}$, is also predicted. This is in discord with the model proposed by Stephanou and Georgiou, wherein the second normal stress difference vanishes; this result is a direct consequence of the constant-determinant constraint imposed on the conformation tensor S in the present work.

We note, as was the case for the shear stress [Figs. 2(a) and 3(a)] and the shear viscosity [Figs. 2(b) and 3(b)], that by decreasing the parameter ε, the yield values are noted to increase (in the limiting case, when $\varepsilon \to \infty$, no yield values are predicted). However, the effect on N_2 is noted to be more significant than that on N_1: when the parameter ξ is increased, the value of $N_{1,y}$ is only slightly affected, whereas N_1 at large shear rates is seen to decrease. On the other hand, the increase of the parameter ξ shifts the whole-N_2 curve upwards. Unfortunately, given the absence of any rheological data concerning the normal stresses of blood, we are not in a position of judging as to whether these predictions are the expected ones. This comment is not restricted only to blood as experimental rheologists have routinely encountered problems in measuring normal stresses in materials known to exhibit a yield shear stress. Only very recently have novel experimental measurements of the yield normal stresses taken place that highlight that not only yield normal stresses are not negligibly small (with $N_1 > 0$ and $N_2 < 0$) but also are as important as the yield shear stress. Overall, these recent experimental observations are in accord with the predictions presented above, albeit they do not refer to blood.

B. Inception of simple shear flow

In Fig. 6, we provide the model predictions for the growth of the dimensionless shear viscosity, $(\eta' - \eta_\infty)/(f_0 H \eta s)$, wherein we have subtracted the infinite-rate viscosity [panel (a)], and the dimensionless first, $\Psi'_1/(f_0 H \eta s \tau_s)$ [panel (b)], and negative second, $-\Psi'_2/(f_0 H \eta s \tau_s)$ [panel (c)], normal stress coefficients as a function of dimensionless time, t/τ_s, for $Ca = 1$ and 10, and various values of the parameters. At the smaller shear rate ($Ca = 1$), the first normal stress coefficient is noted to approach its steady-state values monotonically, whereas the shear viscosity and the second normal stress coefficient are noted to go through an overshoot before they reach their steady-state values, which becomes more pronounced by decreasing ε and increasing ξ. Similar conclusions have been noted in our previous model, i.e., when $\varepsilon \to \infty$. On the other hand, at larger shear rates ($Ca = 10$), we note that all material functions are seen to undergo a dumping behavior, i.e., the appearance of an undershoot following the overshoot, which is more intense in the case of the shear viscosity and the second normal stress coefficient. This behavior intensifies by increasing the value of the non-affine parameter. As noted by Stephanou and Tsimouri, the occurrence of this dumping behavior can be attributed, following similar undershoots appearing in the transient shear viscosity of concentrated polymeric solutions, to the tumbling behavior of RBCs in simple shear, which has also been observed experimentally (see, e.g., Ref. 24 in Ref. 37). The appearance of such undershoots in the tran-
sient shear viscosity is in complete accord with recent rheological data.36

IV. COMPARISON WITH EXPERIMENTAL DATA

Sousa et al.37 measured the shear stress of a donor’s blood for a physiological \(Ht\) (41.6%). We consider the plasma viscosity to be equal to \(\eta = 1.2\) mPa s and the average value for the viscosity ratio, i.e., \(\lambda = 5\), meaning that \(T(\lambda) \approx 2.1667\); we further consider \(Ht_m = 0.72\). The remaining parameters (\(\xi = 0.01\), \(\varepsilon = 5\), \(f_0 = 1\), and \(\tau_S = 0.06\) s) are obtained by simply fitting the model prediction to the experimental data of Sousa et al.38 This comparison is shown in Fig. 7 where we note that the model accurately predicts the experimental data.

Finally, in Fig. 8, we compare the model prediction against the rheological response of normal human blood to a step-change in shear rate experiments (measurements were done at 25 ± 0.5\(^\circ\)C) reported by Bureau et al.39 at rest, a shear rate equal to 1 s\(^{-1}\) is applied, and after 8.5 s, the shear rate is suddenly reduced to zero.

Given that the plasma viscosity at 20\(^\circ\)C is equal to about 2 mPa s40 and 1.2 mPa s at 37\(^\circ\)C, 41 via linear interpolation, we estimate its value at 25\(^\circ\)C to be about 1.8 mPa s. We will consider a hematocrit equal to 0.45 (as Ref. 59 did not report it), \(\lambda = 5\) meaning that \(T(\lambda) \approx 2.1667\), and \(Ht_m = 0.72\). Then, considering \(\varepsilon = 30\), \(f_0 = 4.2\), and \(\tau_S = 1\) s, a satisfactory agreement with the experimental data of Bureau et al.42 is noted, although the height of the overshoot is not accurately predicted.

V. CONCLUSIONS

In this work, we have derived a new hemorheological model that addresses self-consistently both the aggregation and deformation of RBCs by extending our previous model wherein we considered only non-aggregating blood.43 Such an understanding is paramount if we aspire to fully comprehend the rheological behavior of blood in our circulation via the execution of \textit{in silico} simulations. To address the deformability of RBCs, since they are merely droplets with the inner fluid exhibiting a higher viscosity than the outer one, RBCs are considered to be described by a conformation tensor constrained to have a constant determinant following our recent work.44 Second, we have introduced additional contributions that allow for the prediction of yield values for the shear stress and the two normal stress differences. Since we develop our model in the context of the generalized bracket formalism of NET,45 the incorporation of the various mechanisms into the constitutive model is done without ambiguities; furthermore, the new model is shown to be thermodynamically admissible (see the Appendix). This is an especially important feature of our work that guarantees the internal consistency of the final dynamical equations. We have shown that the new model is able to accurately predict the rheological response of normal (aggregating) blood: the steady-state shear viscosity as measured by Sousa et al.38 (Fig. 7) and the transient shear viscosity measured in step-change in shear rate experiments by Bureau et al.46 (Fig. 8).

In addition to the prediction of a yield shear stress, our model predicts yield normal stresses whose physicality cannot be currently judged due to the unavailability of such measurements in the literature. Only recently has experimental evidence emerged highlighting the significance of normal stresses at the yield point,66,67 leading to the definition of a yield stress tensor.68 We note the overall qualitative agreement of our model predictions with these recent measurements, but clearly an actual comparison cannot be attempted as these measurements were made for other yield stress materials. Given that, in addition to ours, other theoretical models predict non-vanishing yield normal stresses,68,69 our work should act as a calling to the experimental rheological community to be more actively interested in measuring yield normal stresses in blood; such measurements could have dire implications to the \textit{in silico} modeling of blood flow.

During the past few decades, drug-carrying, micro- or nanosized, particles have been used to provide promising and more effective alternative treatments, compared to traditional ones, to fight several diseases. The execution of \textit{in silico} trials (that is, the execution of clinical human trials in computers, i.e., on virtual patients) of such treatments would allow for a faster and more economic design of suitable drug-carrying particles. Given the thermodynamic
nature of our current approach, it can be used in the future to address the transport of drug-carrying particles in our circulation and how this affects blood rheology. This can be done by introducing one more structural variable, the so-called orientation tensor that describes the average orientation of the particles, following previous works. The orientation tensor is constrained to have a constant trace due to the rigidity of the particles considered. Thus, the use of NET can accommodate the consistent incorporation of the new structural variable and its proper coupling with the rest. Such a modification of the present model, i.e., to account for particle advection in our circulation, is expected to be submitted soon for publication.

ACKNOWLEDGMENTS

This work was partially co-funded by the Republic of Cyprus through the Research Promotion Foundation (Project No. POST-Doc/0916/0197).

There are no conflicts to declare.

APPENDIX: THERMODYNAMIC ADMISSIBILITY

Any thermodynamic system must obey the restriction of a non-negative total rate of entropy production. In the case the fluid under study is isothermal and incompressible, the entropy production results from the degradation of the mechanical energy leading to $dH_m/dt = [H_m, H_m] \leq 0$. For this to be satisfied in our model, it can be shown that the following condition must hold:

$$-[H_m, H_m] = \int \nabla_\alpha \left(\frac{\delta H_m}{\delta M_\alpha} \right) Q_{\alpha\beta\gamma\delta} \nabla_\nu \left(\frac{\delta H_m}{\delta M_\nu} \right) - \int \Lambda^{\alpha\beta} \left(\frac{\delta H_m}{\delta \lambda} \right)^2 dV$$

$$+ \int \left(\delta_{\mu\alpha} \delta_{\nu\beta} - \frac{1}{3} S_{\mu\nu} S_{\alpha\beta} \right) \frac{\delta H_m}{\delta S_{\mu\nu}} \Lambda_{\mu\nu\gamma} \delta_{\rho\lambda} \delta_{\sigma\delta} \frac{\delta H_m}{\delta S_{\rho\sigma}} dV \geq 0.$$ \hspace{1cm} (A1)

The first is easily shown to be

$$\int \nabla_\alpha \left(\frac{\delta H_m}{\delta M_\alpha} \right) Q_{\alpha\beta\gamma\delta} \nabla_\nu \left(\frac{\delta H_m}{\delta M_\nu} \right) = \eta \gamma P(H_t, \lambda_\gamma) \gamma : \gamma \geq 0,$$ \hspace{1cm} (A2)

which holds true for a non-negative solvent viscosity and $P(H_t, \lambda_\gamma) \geq 0$ given the use of the particular choice Eq. (13), this condition is satisfied. For the second expression, we only need to make sure that $\Lambda^{\alpha\beta} \geq 0$, which, as can be seen from Eq. (14), is indeed satisfied given the non-negativity of Γ, H_t, and τ_γ. Finally, for the third expression, we have (see also Ref. 37)

$$\left(\delta_{\mu\alpha} \delta_{\nu\beta} - \frac{1}{3} S_{\mu\nu} S_{\alpha\beta} \right) \frac{\delta H_m}{\delta S_{\mu\nu}} \Lambda_{\mu\nu\gamma} \delta_{\rho\lambda} \delta_{\sigma\delta} \frac{\delta H_m}{\delta S_{\rho\sigma}} = \frac{3(1-\lambda) H_t}{\tau_5} \left[tr C^3 - tr C^2 + \frac{2l^2 C}{3} - \left(\frac{2l^2 C}{3} - l_1^2 \right) \right].$$ \hspace{1cm} (A3)

As shown by Stephanou and Tsimouri, using the Caley–Hamilton theorem, one can show that $tr C^3 = \left(l_1^2 \right)^3 - 3l_1^2 l_2^2 + 3$, and noting that $l_1^2 \geq 3$ and $l_2^2 \geq 3$, then $tr C^2 - tr C = l^2 \geq 0$ and $\frac{2l^2 C}{3} - l_1^2 \geq 3$, the fact that the parameters Γ, H_t, and τ_γ are non-negative and that $0 \leq \lambda \leq 1$ it is proven that $dH_m/dt = [H_m, H_m] \leq 0$. Finally, we need not check whether the conformation tensor is positive-definite since, in the particular application, its determinant is conserved (see also Ref. 37).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES