Steel Fibre Reinforced Rubberised Concrete for Forgiving Road Infrastructure

Dr. Thomaida Polydorou
Marie Sklodowska-Curie Postdoctoral Research Fellow
Cyprus University of Technology
Outline

- SAFER Project Introduction
- Circular Economy
 - SAFER Contribution to Circular Economy
Rubberised Concrete for Forgiving Infrastructure

- Reduction of fatalities in road transport
 - 1 of top ten goals set by the European Union’s “White paper on transport”
 - The goal of reducing to half by 2020 will NOT be reached

 ☆ Unless the decrease at much higher rates starting now!

Most Vulnerable Road Users

- Motorcyclists
 - Comprise a significant 15% of all road fatalities in Europe
- An additional 3% of all road fatalities are
 - moped and
 - other light-powered 2-wheeler riders
Current Road Barriers..

- Hitting a barrier is a factor in 8-16% of deaths
- Injuries are up to 5 times more severe
Current Road Barriers..

- Hard metal, Plain concrete
- Limited deformability
- Limited energy absorption

\Rightarrow Upon collision, rider bodies absorb impact
The NEED for Forgiving Infrastructure
The NEED for Forgiving Infrastructure

- Plain concrete
 - Limited deformability, Limited energy absorption

 + Rubber \Rightarrow energy absorption, impact resistance

 + Steel fibres \Rightarrow flexural strength, energy absorption and toughness

 + Textile/polymer fibres \Rightarrow improved fresh concrete properties
The NEED for Forgiving Infrastructure

- There is **critical need** to adopt improved barrier designs to protect vulnerable road users

 (EuroRAP (2008). Barriers to change: Designing safe roads for motorcyclists)

- Our goal for road barriers
 - Absorb impact energy
 - Reduce injury and damage severity
Proposed Research

- Proposed Mix Designs
 - 10%, 40% and 60% aggregate volume replacement

- Impact testing using
 - Charpy testing machine
Circular Economy
SAFER Contribution

“closing the loop”

http://www.housingeurope.eu
Take-make-consume and dispose model
This model is not sustainable!
“2020 Resource Efficiency” agenda:

- boost economic performance while reducing resource use;
- identify and create new opportunities for economic growth and greater innovation and boost the EU's competitiveness;
- ensure security of supply of essential resources;
- fight against climate change and limit the environmental impacts of resource use.
- Exchange by-products; refurbished or manufactured
- Turn waste into a resource service or change use
New EU Legislative Targets – Amongst others:

- Recycling 65% of municipal waste by 2030
- Recycling 75% of packaging waste by 2030
- Reduce landfill to maximum of 10% of all waste by 2030
- Ban on landfilling of separately collected waste
- Promotion of economic instruments to discourage landfilling
- Promote re-use and stimulate industrial symbiosis
- Economic incentives for producers to put greener products on the market and support recovery and recycling schemes
Main Phases of Circular Economy

- Interlinked phases since materials can be used in a cascading way, e.g.;
- Industries exchange by-products,
- Products are refurbished or remanufactured

Main aim ➔ minimise resources escaping the loop!
Transition to Circular Economy

Business and market model transformation requires:

- “Cradle to cradle” Life cycle assessment
- Definition of Key performance indicators
- Development of industrial symbiosis

 e.g. UK: NISP
Turning waste into resources and new uses through innovation and creativity
Circular Economy Benefits

- In Europe, the implementation of circular economy can achieve:
 - Overall cost savings worth up to €600 billion/year and a GDP boost by up to 4%
 (=> Boosting job growth)
 e.g. if 95% of mobile phones were collected, this could generate savings on manufacturing material costs of more than €1 billion
 - Reduction of greenhouse gas emissions by 2-4%
 - European companies can benefit from the fast growth in the market of eco-industries
SAFER Contribution to Circular Economy

- Positive contribution of SAFER by developing products and applications which:
 - Are material and energy efficient during their production and use phases;
 - Use ALL secondary raw materials from End-of-life tyre recycling in innovative concrete engineering applications
Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. [748600]
Thank you

www.safer.cut.ac.cy
thomaidapolydorou@cut.ac.cy