BOREHOLE GROUND HEAT EXCHANGERS AND THE FLOW OF UNDERGROUND WATER

1IOSIFINA IOSIF-STYLIANOU, 2PAUL CHRISTODOUIDES, 3LAZAROS ARESTI, 4SAVVAS TASSOU, 5GEORGIOS FLORIDES

1,4Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
2Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus
3Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus

E-mail: 1Joseline.JS@live.com, 2paul.christodoulides@cut.ac.cy, 3Savvas.Tassou@brunel.ac.uk, 4lg.aresti@edu.cut.ac.cy, 5georgios.florides@cut.ac.cy.

Abstract - Vertical Ground Heat Exchangers (GHEs) in boreholes are a major form of Geothermal Energy applications. When water flowing underground past the borehole the heat injection rates of the GHE are subject to change. Here, we construct a mathematical model for such regimes. Then, based on the Finite Element Method we construct a corresponding computational model, which is validated with experimental data of a Thermal Response Test carried out in Lakatameia, Cyprus. Finally, using the validated model, the thermal behavior of borehole GHEs is investigated by studying the effect of the (a) BH radius, (b) U-tube diameter, (c) U-tube leg and BH centers distance, (d) grout thermal conductivity and (e) underground water velocity.

Keywords - Ground Heat Exchangers, borehole, groundwater flow, geothermal energy, computational modeling

I. INTRODUCTION

Geothermal energy, although of high installation cost, is a fast growing Renewable Energy Source as it can find applications everywhere. One of the standard approaches for lower and mid-depth applications is the borehole vertical Ground Heat Exchanger (GHE). In particular, GHE technology is of higher efficiency for air-conditioning (A/C) compared to conventional systems. GHE systems, which are a borehole (BH) as a heat exchanger in the ground. The underground environment provides lower temperature for cooling and higher temperature for heating and experiences lower temperature fluctuation than ambient air, with the underground temperature being approximately equal to the mean annual atmospheric temperature of the year [1–2]. Fluid circulates through pipes, resulting in indirect thermal contact between the fluid and the subsurface. The whole GHE system is controlled by the effective area and can be limited by the equipment involved, e.g. type and size of pipes, the grouting material [3], the velocity of the circulating fluid [4], the thermal conductivity of the subsurface [5–7], the presence of underground water due to the presence of an aquifer [8–9], and so on. An aquifer is the saturated permeable geologic unit that can transmit significant quantities of water under ordinary hydraulic gradients [10].

It is thus necessary to use simulations and validation tools for the parametric analysis of the above-mentioned factors that can lead to the optimization of the GHE system. The present study deals with the calculation of heat injection rates of GHEs, as these are affected by the (i) BH radius, (ii) U-tube diameter, (iii) U-tube leg and BH centers distance, (iv) grout thermal conductivity and (v) underground water velocity. To validate the proposed methodology, a study case was set up in an area with high potential in geothermal usage and a Thermal Response Test (TRT) was carried out. The TRT is a method determining the thermal characteristics of the ground based on injecting heat in the BH at constant power, while the mean BH temperature is recorded continuously during the test [11]. The area chosen was Lakatameia, near Nicosia – the capital city of Cyprus.

Regarding the computation of the temperature of the fluid circulated in the U-tubes of a GHE, various analytical and numerical models exist such as the line- and the cylindrical-source models [12–13] and models based on finite element methods (FEM) [14–15]. For the utilization of numerical methods a number of commercial and freeware software programs, suitable for GHE system design can be found in the market. In the present analysis the FlexPDE software was used, with the help of FEM, to numerically solve a system of partial differential equations (PDE) governing the energy flow and the temperature change in and around a BH. FlexPDE is a general-purpose software that can solve steady-state, time-dependent and free boundary problems. FlexPDE builds a mesh, constructs a system FEM, solves it, and presents an easy to use graphical output.

A study case of a real BH located in Lakatameia was set-up in the FlexPDE environment. First the experimental data related to the above-mentioned BH are collected. Then a mathematical model governing vertical GHE systems in the presence of an aquifer is
presented. Based on these the computational model in FlexPDE is constructed and validated. Consequently, a parametric analysis of the GHE is attempted and a discussion of the results is given.

II. METHODOLOGY AND NUMERICAL MODEL

2.1. Experimental data

The study under consideration here is a geothermal system of a BH GHE with a surrounding rock mass crossed by an aquifer. The temperature of the ground in the Lakatameia BH, chosen as a study case, was measured in the framework of a project for the efficient use of Ground Coupled Heat Pumps in Cyprus [16–17]. According to the project’s findings, the ground is divided into three zones: (i) the surface zone, (ii) the shallow zone, (iii) the deep zone. The surface zone is affected by seasonal variations as the depth increases (shallow zone), and at 8 m approx. (deep zone) the underground temperature nearly remains unchanged throughout the year [18]. Similar statements were made in the framework of other studies in various regions of the world [19–21].

The underground temperature in the Lakatameia BH, for depths over 7 m was 22°C, with1°C increase per 100 m (temperatures were recorded for depths of up to 160 m). All recorded temperatures for a day per month at the Lakatameia BH, over a whole year, varying from 11 to 37°C can be found in [22–23]. Based on these, one can obtain realistic temperature gradients (best-fit polynomial equations) that can be imposed on the numerical model for the depth profile in FlexPDE.

The Lakatameia GHE (illustrated in Fig. 1) consisted of plastic tubes (polyethylene), with the space between the tubes and the hole (radius 0.1 m) filled with bentonitic clay with cement, as an appropriate grout material for good contact between the tube and the undisturbed ground and to reduced thermal resistance. The vertical GHE was drilled with a 20-cm diameter of drill. Regarding lithology, the BH consists of marls (Nicosia Formation). The study area is a circle with a 1.4 m radius. The heat exchangers are of the single U-tube configuration. The tubes used are of 160 m length, 0.032 m inner diameter and 0.003 m wall thickness. The distance between the center of the tube and the center of the BH is 0.06 m. The underground water level was at 80 m depth. There were two groundwater flow velocities recorded in the water baring layers: in the majority of them a negligible one at 0.0000000116 m s⁻¹ and a high one at 0.00005 m s⁻¹ for a thickness of about 25 m in layers containing marly sand. The TRT performed at the site [16] for an initial fluid input temperature of 22.85°C gave an input and output temperature difference of 5.2°C for an input power of 5710 W.

The soil thermal properties (respectively, thermal conductivity, density, specific heat capacity) of the BH are λ = 1.4 W m⁻¹ K⁻¹, ρ = 2300 kg m⁻³, c = 950 J kg⁻¹ K⁻¹ for the dry ground, λ = 1.5 W m⁻¹ K⁻¹, ρ = 2600 kg m⁻³, c = 100 J kg⁻¹ K⁻¹ for the saturated ground, λ = 0.9 W m⁻¹ K⁻¹, ρ = 1500 kg m⁻³, c = 800 J kg⁻¹ K⁻¹ for the dry grout, and λ = 1.1 W m⁻¹ K⁻¹, ρ = 1700 kg m⁻³, c = 850 J kg⁻¹ K⁻¹ for the saturated grout. The mean value of thermal conductivity was λ = 1.45 W m⁻¹ K⁻¹.

2.2. Mathematical model

Based on the cylinder heat exchange model, described in detail by Carslaw and Jaeger (1959), and having in mind that in a shallow geothermal BH we have heat transfer by conduction and convection, then a one-dimensional heat conservation equation for an incompressible fluid flowing in the tube with a velocity u = dz/dt [m s⁻¹] is described by

\[\rho c_w \frac{dT}{dt} + u \frac{dT}{dz} - \lambda \frac{\partial^2 T}{\partial r^2} = \frac{\partial}{\partial r} \left(\lambda \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(h (T - T_p) \right) = 0, \]

where \(\rho \) is the density of the fluid [kg m⁻³], \(c_w \) is the specific heat capacity of the fluid [J kg⁻¹ K⁻¹], \(h \) is the convective heat transfer coefficient of the process [W m⁻² K⁻¹], \(T \) is temperature [K], \(T_p \) is the fluid temperature, \(T_p \) is the pipe temperature, \(d_a \) is the internal diameter [m] and t is time [s].

Eq. (1) can be used for the fluid in both sides of the tubes of a GHE by changing the sign of velocity u. Taking into consideration that the conduction can take place in all three directions and convection takes place only in one direction, i.e. the direction of the motion of the water in the tubes, then a three-dimensional space heat conservation equation per unit volume may be written as

\[\rho c_v \frac{dT}{dt} + \rho c_w \frac{dT}{dz} - \lambda \frac{\partial^2 T}{\partial r^2} + \frac{\partial}{\partial r} \left(\lambda \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) = \frac{\partial^2 T}{\partial r^2} \]

Convection was considered to take place in the y-direction due to the motion of underground water and is described by

\[\rho c_v \frac{dT}{dt} + \rho c_w \frac{dT}{dz} - \lambda \frac{\partial^2 T}{\partial r^2} + \frac{\partial}{\partial r} \left(\lambda \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial y} \left(h (T - T_p) \right) = 0, \]

where \(\lambda \) is the thermal conductivity of the porous matrix, \(c_v \) is the volume heat capacity of the soil matrix [J m⁻³ K⁻¹], \(v \) is the flow velocity considered anisotropic along the principal axis, T is temperature, \(T_f \) is the fluid temperature, \(T_p \) is the pipe temperature, \(d_a \) is the internal diameter [m] and \(t \) is time [s].
porous material, with solid particles and water, and a phase of a dry material [24].

Now, the energy conservation equation for the pipe wall becomes

\[\rho F_0 \frac{\partial T}{\partial t} + \frac{\partial}{\partial x} \left(-\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(-\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(-\lambda \frac{\partial T}{\partial z} \right) + \frac{4}{r_p} h \left(T_p - T_h \right) = 0, \]

where \(t \) is the thickness of the pipe [m].

In addition, the heat equation representing the flow in the ground (per unit volume) is given by

\[\rho_c c_p \frac{\partial T}{\partial t} + \frac{\partial}{\partial x} \left(-\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(-\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(-\lambda \frac{\partial T}{\partial z} \right) = 0, \]

where subscript \(g \) denotes the ground.

Note that at the boundary between the fluid and the tubes, the convective heat flux is \(h \Delta T \), where \(h \) is the convective heat transfer coefficient of the process and \(\Delta T \) is the temperature difference at the boundary. The convection heat transfer coefficient can be estimated as \(h = \frac{\lambda \cdot N_u}{D_H} \), where \(D_H \) is the hydraulic diameter (in this case the tube inside diameter) and \(N_u \) is the Nusselt number. The Nusselt number in this case can be expressed through the Dittus–Boelter correlation as \(N_u = 0.023 Re^{0.8} Pr^{rac{1}{3}} \), where \(Pr = \frac{\mu c_p}{\lambda} \) is the Prandtl number, \(Re = \frac{\rho cd_0}{\mu} \) is the Reynolds number, \(\mu \) is the dynamic viscosity, and \(n = 0.4 \) for heating and 0.33 for cooling.

As the fluid properties are evaluated at the bulk temperature, an iterating process is applied for the equations above.

2.3. Computational model

The Lakatameia BH GHE domain is illustrated in Fig. 1.

The desired model was created in the FlexPDE environment, where the soil thermal properties and the GHE characteristics of the BH (see Section 2.1) as well as the best-fit formulas for the realistic temperature gradients for shallow and deep zones have been implemented. As FlexPDE allows for a detailed description of the geometry, boundary layers and boundary conditions, the model tested the response of the GHE for the top layer temperature in the presence of underground water in an aquifer. The heat transfer inside and around the BH was also analyzed.

2.4. Validation of the model

The model above was then validated using the TRT results carried out in-situhe Lakatameia BH in December 2009. As already mentioned, the best-fit equations for the temperature gradient were imposed on the numerical model to match the ground temperatures used in simulations to the actual temperatures of the ground during the experimental measurements. This was achieved through the use of the swage function of FlexPDE. The initial ground temperatures on the vertical BH axis are shown in Fig. 2 and correspond to the actual measured values of the ground. The actual ground temperature in the BH increases up to a depth of 5 m reaching 23.4°C and then decreases slightly up to a depth of 30 m. Then ground temperature increases again, reaching 24.5°C at a depth of 160 m.

Note that the geometry of the Lakatameia BH was scaled in the z-coordinate by a factor of 0.00385, the maximum factor that the computer could handle. The reason is simply for saving computational memory and time as the z dimension has an enormous difference in relation to the other dimensions.

Fig. 2. Initial Ground Temperature on the vertical BH axis (scaled in the z-coordinate by 0.00385)

The desired model was created in the FlexPDE environment, where the soil thermal properties and the GHE characteristics of the BH (see Section 2.1) as well as the best-fit formulas for the realistic temperature gradients for shallow and deep zones have been implemented. As FlexPDE allows for a detailed description of the geometry, boundary layers and boundary conditions, the model tested the response of the GHE for the top layer temperature in the presence of underground water in an aquifer. The heat transfer inside and around the BH was also analyzed.

2.4. Validation of the model

The model above was then validated using the TRT results carried out in-situhe Lakatameia BH in December 2009. As already mentioned, the best-fit equations for the temperature gradient were imposed on the numerical model to match the ground temperatures used in simulations to the actual temperatures of the ground during the experimental measurements. This was achieved through the use of the swage function of FlexPDE. The initial ground temperatures on the vertical BH axis are shown in Fig. 2 and correspond to the actual measured values of the ground. The actual ground temperature in the BH increases up to a depth of 5 m reaching 23.4°C and then decreases slightly up to a depth of 30 m. Then ground temperature increases again, reaching 24.5°C at a depth of 160 m.

Note that the geometry of the Lakatameia BH was scaled in the z-coordinate by a factor of 0.00385, the maximum factor that the computer could handle. The reason is simply for saving computational memory and time as the z dimension has an enormous difference in relation to the other dimensions.
Fig. 3 shows the comparison and the good agreement between the TRT and the measured values. This allows one to use the validated model to extract realistic conclusions for the parametric analysis that follows in Section 3.

In general, regarding the temperature distribution at the end of the 50 h run, the grout attains a higher temperature than the surroundings, the middle layer where higher velocity flow is present attains a lower temperature, and the low velocity layer is a little cooler than the top layer.

III. PARAMETRIC ANALYSIS

The next step is to tackle the main goal of this paper, i.e. to perform a parametric analysis of the GHE, based on the model of Section 2. In all cases the power absorbed was kept constant at 5710 W, with the temperature difference between the input and the output circulating water being 5.2 °C for a cooling mode.

3.1. Borehole radius

Four different radiiuses of the BH, namely 0.08, 0.10, 0.125, 0.15 m were simulated in order to evaluate the effect of this characteristic on the thermal response of the GHE. The clear outcome is that the smaller the BH radius the lower the temperature of the fluid of the GHE (Fig. 4). This is because of the thermal properties of the grout (see Section 2.1) in comparison to the surrounding ground. The accumulation of heat in the bigger radius grout due to its higher resistance results in higher temperature.

![Temperature evolution of the GHE for various values of the grout thermal conductivity λ](image1)

3.2. Grout thermal conductivity

![Temperature evolution of the GHE for various values of the grout thermal conductivity λ](image2)
Four different grout materials of thermal conductivity 0.7, 0.9, 1.5 and 2.0 W m$^{-1}$ K$^{-1}$ were simulated in order to evaluate the effect of this characteristic on the thermal response of the GHE. The clear outcome is that when the energy absorbed by the GHE is the same, the lower the grout thermal conductivity the higher the temperature of the fluid of the GHE (Fig. 5).

3.3. U-tube size

Four different U-tube sizes of external diameters, namely 20, 25, 32 and 40 mm, were simulated in order to evaluate the effect of this characteristic on the thermal response of the GHE. The clear outcome is that, when the energy absorbed by the GHE is the same, the lower the diameter the higher the temperature of the fluid of the GHE (Fig. 6).

![Fig. 6. Temperature evolution of the GHE for various values of the U-tube external diameter](image)

3.4. Distance between leg and borehole centers

Four different distances between the leg and the BH centers (for as symmetric BH), namely 35, 45, 55 and 65 mm, were simulated in order to evaluate the effect of this characteristic on the thermal response of the GHE. The clear outcome is that, when the energy absorbed by the GHE is the same, the lower the center-to-center distance the higher the temperature of the fluid of the GHE (Fig. 7).

![Fig. 7. Temperature evolution of the GHE for various values of the distances between the leg and the BH center](image)

3.5. Underground water velocity

The presence of underground water and an aquifer improves the heat exchange of a GHE with the ground [8–9]. To quantify this, four different underground water flows in the underground layer with the "high" velocity with realistic values of 0.000001, 0.000025, 0.0001 and 0.0002 m s$^{-1}$ were simulated in order to evaluate the effect of this characteristic on the thermal response of the GHE. The clear outcome is that, when the energy absorbed by the GHE is the same, the lower the underground water velocity the higher the temperature of the fluid of the GHE (Fig. 8).

![Fig. 8. Temperature evolution of the GHE for various values of the underground water velocity](image)

It turns out that higher underground water velocities (over 0.0003 m s$^{-1}$) do not lead to extra cooling.
CONCLUSIONS

In the previous Sections, the mathematical model describing the heat transfer in BH GHEs in soils where groundwater flow may be present was developed. Based on this, the FlexPDE software was used to build an equivalent FEM computational model. The computational model was validated with collected data from a TRT that was carried out in Lakatameia, Cyprus. The validated model allows for the investigation of the heat injection rate of a BH GHE. A parametric analysis, for the cooling mode of the GHE, that can be a great help for the designing engineer was then performed. Five GHE features were explored as follows. When all other parameters/factors are kept unaltered decreasing the BH radius improves cooling (and the efficiency of the heat pump of the system), provided an appropriate grout material is used. In its turn the greater thermal conductivity improves cooling when increased. Also, the study case shows that increasing the U-tube diameter results in a better cooling effect. Another finding of the study is that the greater the distance between centers of the tube and the BH, the better the cooling. Finally, the presence of underground water improves the heat exchange ability, with cooling increased for increased underground water velocities, although a maximal such velocity exists. The study presented in this paper constitutes an important step toward investigating the importance of the presence of an aquifer in the construction of a BH GHE. Such an investigation can be further extended both for the factors explored here as well as for factors such as the summer and winter mode of operation, the underground temperature variation in depths smaller than 7 m due to daily and seasonal changes, the actual power rejected into or absorbed by the ground and the thermal resistance of the BH.

REFERENCES

Borehole Ground Heat Exchangers and The Flow of Underground Water

72