Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/32451
DC FieldValueLanguage
dc.contributor.authorStephanou, Pavlos S.-
dc.contributor.authorGeorgantopoulos, Christos K.-
dc.contributor.authorCausa, Andrea-
dc.contributor.authorWilhelm, Manfred-
dc.date.accessioned2024-04-08T05:45:07Z-
dc.date.available2024-04-08T05:45:07Z-
dc.date.issued2023-11-29-
dc.identifier.citationPhysics of Fluids, 2023, vol. 35, iss. 11en_US
dc.identifier.issn10706631-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/32451-
dc.description.abstractThe rheological behavior of styrene-butadiene rubber (SBR) compounds filled with silica is investigated as a function of silica volume fraction. To predict the mechanical response, a continuum model for entangled polymer melts filled with nanoparticles is herein introduced. This model is capable of describing the rheological response in both the linear and nonlinear viscoelastic regimes in the context of non-equilibrium thermodynamics to guarantee its thermodynamic admissibility. The constitutive model describes the polymer nanocomposite melts at a mesoscopic level of description by considering the conformation tensor between successive entanglement points, and the orientation tensor for the, in general, spheroidal nanoparticles that describes their average orientation. Evolution equations are developed for nanoparticles with an arbitrary shape but are eventually specified to the case of spherical ones. The multimode version of the new constitutive model provides a very accurate prediction of the rheological behavior of the processability range of SBR/silica nanocomposites. Thus, the new model is a tool able to provide answers to the several difficulties that rubber-producing manufacturers face when processing rubber compounds.en_US
dc.language.isoenen_US
dc.relation.ispartofPhysics of Fluidsen_US
dc.rights© AIP Publishingen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleModeling the rheological behavior of silica filled rubber compoundsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationKarlsruhe Institute of Technologyen_US
dc.collaborationUniversity of Milanen_US
dc.collaborationVAT Vakuumventile AGen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countrySwitzerlanden_US
dc.countryItalyen_US
dc.countryGermanyen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1063/5.0177381en_US
dc.identifier.scopus2-s2.0-85180498637-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85180498637-
dc.relation.issue11en_US
dc.relation.volume35en_US
cut.common.academicyear2023-2024en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypearticle-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-3182-0581-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.journal.journalissn1089-7666-
crisitem.journal.publisherAmerican Institute of Physics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

135
Last Week
2
Last month
checked on May 20, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons