Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/24308
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorIoakeimidis, Apostolos-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorKoutsouroubi, Eirini D.-
dc.contributor.authorArmatas, Gerasimos S.-
dc.contributor.authorChoulis, Stelios A.-
dc.date.accessioned2022-02-17T12:18:57Z-
dc.date.available2022-02-17T12:18:57Z-
dc.date.issued2021-11-01-
dc.identifier.citationNanomaterials, 2021, vol. 11, no. 11, articl. no. 3074en_US
dc.identifier.issn20794991-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/24308-
dc.description.abstractLow temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiOx using different molar ratios (w/o, 0.1 and 1.5) of fuel acety-lacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiOx, is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiOx thin films show a more gradual mass loss while the bulk Cu:NiOx exhibits a distinct combustion process. The thin films can crystallize to Cu:NiOx at an annealing temperature of 300 °C, irrespective of the Acac/Ox-idizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiOx, including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiOx thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiOx HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs0.04(MA0.17FA0.83)0.96 Pb(I0.83Br0.17)3-based PVSCs achieved for Cu:NiOx HTLs for annealing temperature of 300 °C.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNanomaterialsen_US
dc.rights© The Author(s)en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCu:NiOxen_US
dc.subjectMetal oxidesen_US
dc.subjectSolution combustion synthesisen_US
dc.subjectMetal-organic precursorsen_US
dc.subjectFuelsen_US
dc.subjectOxidizersen_US
dc.subjectElectronic thin filmsen_US
dc.subjectHole transporting layersen_US
dc.subjectAnnealing temperatureen_US
dc.subjectPerovskite solar cellsen_US
dc.titleThermal analysis of metal-organic precursors for functional cu:Νiox hole transporting layer in inverted perovskite solar cells: Role of solution combustion chemistry in cu:Νiox thin films processingen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of West Atticaen_US
dc.collaborationUniversity of Creteen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3390/nano11113074en_US
dc.identifier.pmid34835837-
dc.identifier.scopus2-s2.0-85118936486-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85118936486-
dc.relation.issue11en_US
dc.relation.volume11en_US
cut.common.academicyear2020-2021en_US
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3974-6574-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn2079-4991-
crisitem.journal.publisherMDPI-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
nanomaterials-11-03074-v3.pdf4.41 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

1
checked on 2 Φεβ 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

229
Last Week
2
Last month
10
checked on 26 Μαϊ 2024

Download(s)

121
checked on 26 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons