Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22899
DC FieldValueLanguage
dc.contributor.authorKoutsouroubi, Eirini D.-
dc.contributor.authorVamvasakis, Ioannis-
dc.contributor.authorMinotaki, Maria G.-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorDrivas, Charalampos-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorKopidakis, Georgios-
dc.contributor.authorKennou, Stella-
dc.contributor.authorArmatas, Gerasimos S.-
dc.date.accessioned2021-08-27T05:09:10Z-
dc.date.available2021-08-27T05:09:10Z-
dc.date.issued2021-11-15-
dc.identifier.citationApplied Catalysis B: Environmental, 2021, vol. 297, articl. no. 120419en_US
dc.identifier.issn09263373-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22899-
dc.description.abstractHighly efficient and cost-effective photocatalysts are among the most prominent targets in the field of environmental remediation and clean energy production. Here, we report that 2D/2D layer heterostructures composed of exfoliated Ni-doped MoS2 nanosheets and g-C3N4 layers can carry out photocatalytic Cr(VI) reduction in aqueous solutions with outstanding activity, exhibiting apparent QYs as high as 29.6 % and 23.7 % at 375 and 410 nm. We show that Ni doping of MoS2 markedly increases the photochemical activity, which, together with electrochemical, spectroscopic and theoretical DFT studies, arises from the enhanced carrier density and mobility at the Ni-MoS2/g-C3N4 interface. In addition to the favorable charge transport properties, delineation of the photoinduced oxidation reactions by gas monitoring techniques reveals that the high efficiency also arises from fast water oxidation kinetics. The results of this work mark an important step forward in understanding and designing low-cost and earth-abundant catalysts for detoxification of Cr(VI)-contaminated industrial effluents.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Catalysis B: Environmentalen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCr(VI) reductionen_US
dc.subjectCarbon nitrideen_US
dc.subjectMoS2en_US
dc.subjectPhotocatalysisen_US
dc.subjectOxygen evolutionen_US
dc.titleNi-doped MoS2 modified graphitic carbon nitride layered hetero-nanostructures as highly efficient photocatalysts for environmental remediationen_US
dc.typeArticleen_US
dc.collaborationUniversity of Creteen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.apcatb.2021.120419en_US
dc.identifier.scopus2-s2.0-85107696603-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85107696603-
dc.relation.volume297en_US
cut.common.academicyear2021-2022en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn0926-3373-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

32
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

264
Last Week
1
Last month
11
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons