Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22880
DC FieldValueLanguage
dc.contributor.authorFilippou, Panagiota S.-
dc.contributor.authorZarza, Xavier-
dc.contributor.authorAntoniou, Chrystalla-
dc.contributor.authorObata, Toshihiro-
dc.contributor.authorVillarroel, Carlos A.-
dc.contributor.authorGanopoulos, Ioannis-
dc.contributor.authorHarokopos, Vaggelis-
dc.contributor.authorGohari, Gholamreza-
dc.contributor.authorAidinis, Vassilis-
dc.contributor.authorMadesis, Panagiotis-
dc.contributor.authorChristou, Anastasis-
dc.contributor.authorFernie, Alisdair R.-
dc.contributor.authorTiburcio, Antonio F.-
dc.contributor.authorFotopoulos, Vasileios-
dc.date.accessioned2021-08-25T10:53:28Z-
dc.date.available2021-08-25T10:53:28Z-
dc.date.issued2021-
dc.identifier.citationComputational and Structural Biotechnology Journal, 2021, vol. 19, pp. 2133-2147en_US
dc.identifier.issn20010370-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22880-
dc.description.abstractSalt stress is an important factor limiting plant productivity by affecting plant physiology and metabolism. To explore salt tolerance adaptive mechanisms in the model legume Medicago truncatula, we used three genotypes with differential salt-sensitivity: TN6.18 (highly sensitive), Jemalong A17 (moderately sensitive), and TN1.11 (tolerant). Cellular damage was monitored in roots and leaves 48 h after 200 mM NaCl treatment by measuring lipid peroxidation, nitric oxide, and hydrogen peroxide contents, further supported by leaf stomatal conductance and chlorophyll readings. The salt-tolerant genotype TN1.11 displayed the lowest level of oxidative damage, in contrast to the salt sensitive TN6.18, which showed the highest responses. Metabolite profiling was employed to explore the differential genotype-related responses to stress at the molecular level. The metabolic data in the salt tolerant TN1.11 roots revealed an accumulation of metabolites related to the raffinose pathway. To further investigate the sensitivity to salinity, global transcriptomic profiling using microarray analysis was carried out on the salt-stressed sensitive genotypes. In TN6.18, the transcriptomic analysis identified a lower expression of many genes related to stress signalling, not previously linked to salinity, and corresponding to the TIR-NBS-LRR gene class. Overall, this global approach contributes to gaining significant new insights into the complexity of stress adaptive mechanisms and to the identification of potential targets for crop improvement.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputational and Structural Biotechnology Journalen_US
dc.rightsThis is an open access article under the CC BY-NC-ND licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMetabolomicsen_US
dc.subjectRaffinose pathwayen_US
dc.subjectSalinityen_US
dc.subjectTranscriptomicsen_US
dc.titleSystems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stressen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Barcelonaen_US
dc.collaborationMax Planck Instituteen_US
dc.collaborationMillennium Institute for Integrative Biologyen_US
dc.collaborationHellenic Agricultural Organization “Demeter”en_US
dc.collaborationBiomedical Sciences Research Center Alexander Flemingen_US
dc.collaborationUniversity of Maraghehen_US
dc.collaborationCERTHen_US
dc.collaborationAgricultural Research Institute of Cyprusen_US
dc.subject.categoryAgriculture Forestry and Fisheriesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countrySpainen_US
dc.countryGermanyen_US
dc.countryChileen_US
dc.countryGreeceen_US
dc.subject.fieldAgricultural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.csbj.2021.04.018en_US
dc.identifier.pmid33995908-
dc.identifier.scopus2-s2.0-85104467652-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85104467652-
dc.relation.volume19en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage2133en_US
dc.identifier.epage2147en_US
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2001-0370-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-3974-988X-
crisitem.author.orcid0000-0003-1205-2070-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
1-s2.0-S200103702100129X-main.pdfFulltext4.05 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

13
checked on Feb 2, 2024

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

267
Last Week
3
Last month
11
checked on May 17, 2024

Download(s) 20

184
checked on May 17, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons