Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22864
DC FieldValueLanguage
dc.contributor.authorAurangzeb, Khursheed-
dc.contributor.authorAslam, Sheraz-
dc.contributor.authorAlhussein, Musaed-
dc.contributor.authorNaqvi, Rizwan Ali-
dc.contributor.authorArsalan, Muhammad-
dc.contributor.authorHaider, Syed Irtaza-
dc.date.accessioned2021-08-24T10:18:38Z-
dc.date.available2021-08-24T10:18:38Z-
dc.date.issued2021-
dc.identifier.citationIEEE Access, 2021, vol. 9, pp. 47930 - 47945en_US
dc.identifier.issn21693536-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22864-
dc.description.abstractComputer-Aided diagnosis (CAD) is a widely used technique to detect and diagnose diseases like tumors, cancers, edemas, etc. Several critical retinal diseases like diabetic retinopathy (DR), hypertensive retinopathy (HR), Macular degeneration, retinitis pigmentosa (RP) are mainly analyzed based on the observation of fundus images. The raw fundus images are of inferior quality to represent the minor changes directly. To detect and analyze minor changes in retinal vasculature or to apply advanced disease detection algorithms, the fundus image should be enhanced enough to visibly present vessel touristy. The performance of deep learning models for diagnosing these critical diseases is highly dependent on accurate segmentation of images. Specifically, for retinal vessels segmentation, accurate segmentation of fundus images is highly challenging due to low vessel contrast, varying widths, branching, and the crossing of vessels. For contrast enhancement, various retinal-vessel segmentation methods apply image-contrast enhancement as a pre-processing step, which can introduce noise in an image and affect vessel detection. Recently, numerous studies applied Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement, but with the default values for the contextual region and clip limit. In this study, our aim is to improve the performance of both supervised and unsupervised machine learning models for retinal-vessel segmentation by applying modified particle swarm optimization (MPSO) for CLAHE parameter tuning, with a specific focus on optimizing the clip limit and contextual regions. We subsequently assessed the capabilities of the optimized version of CLAHE using standard evaluation metrics. We used the contrast enhanced images achieved using MPSO-based CLAHE for demonstrating its real impact on performance of deep learning model for semantic segmentation of retinal images. The achieved results proved positive impact on sensitivity of supervised machine learning models, which is highly important. By applying the proposed approach on the enhanced retinal images of the publicly available databases of {DRIVE and STARE}, we achieved a sensitivity, specificity and accuracy of {0.8315 and 0.8433}, {0.9750 and 0.9760} and {0.9620 and 0.9645}, respectively.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCAD toolsen_US
dc.subjectHealthcareen_US
dc.subjectContrast enhancementen_US
dc.subjectCLAHEen_US
dc.subjectPSOen_US
dc.subjectModified PSOen_US
dc.subjectSemantic segmentationen_US
dc.subjectDeep learningen_US
dc.titleContrast Enhancement of Fundus Images by Employing Modified PSO for Improving the Performance of Deep Learning Modelsen_US
dc.typeArticleen_US
dc.collaborationKing Saud Universityen_US
dc.collaborationDongguk Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationSejong Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsOpen Accessen_US
dc.countrySaudi Arabiaen_US
dc.countryCyprusen_US
dc.countrySouth Koreaen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/ACCESS.2021.3068477en_US
dc.identifier.scopus2-s2.0-85103275349-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85103275349-
dc.relation.volume9en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage47930en_US
dc.identifier.epage47945en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.openairetypearticle-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4305-0908-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn2169-3536-
crisitem.journal.publisherIEEE-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

39
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

20
Last Week
1
Last month
1
checked on Oct 29, 2023

Page view(s)

262
Last Week
3
Last month
5
checked on Jun 14, 2024

Download(s)

192
checked on Jun 14, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons