Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/19310
DC FieldValueLanguage
dc.contributor.authorKoutsouroubi, Eirini D.-
dc.contributor.authorVamvasakis, Ioannis-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorDrivas, Charalampos-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorKennou, Styliani-
dc.contributor.authorArmatas, Gerasimos S.-
dc.date.accessioned2020-10-30T09:01:06Z-
dc.date.available2020-10-30T09:01:06Z-
dc.date.issued2020-07-
dc.identifier.citationChemPlusChem, 2020, vol. 85, no. 7, pp. 1379-1388en_US
dc.identifier.issn21926506-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19310-
dc.description.abstractUnderstanding of photochemical charge transfer processes at nanoscale heterojunctions is essential in developing effective catalysts. Here, we utilize a controllable synthesis method and a combination of optical absorption, photoluminescence, and electrochemical impedance spectroscopic studies to investigate the effect of MoS2 nanosheet lateral dimension and edge length size on the photochemical behavior of MoS2-modified graphitic carbon nitride (g-C3N4) heterojunctions. These nano-heterostructures, which comprise interlayer junctions with variable area (i. e., MoS2 lateral size ranges from 18 nm to 52 nm), provide a size-tunable interfacial charge transfer through the MoS2/g-C3N4 contacts, while exposing a large fraction of surface MoS2 edge sites available for the hydrogen evolution reaction. Importantly, modification of g-C3N4 with MoS2 layers of 39±5 nm lateral size (20 wt % loading) creates interfacial contacts with relatively large number of MoS2 edge sites and efficient electronic transport phenomena, yielding a high photocatalytic H2-production activity of 1497 μmol h−1 gcat−1 and an apparent QY of 3.3 % at 410 nm light irradiation. This study thus offers a design strategy to improve light energy conversion efficiency of catalysts by engineering interfaces at the nanoscale in 2D-layered heterojunction materials.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofChemPlusChemen_US
dc.rights© Wileyen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCarbon nitrideen_US
dc.subjectMoS2en_US
dc.subjectNanostructuresen_US
dc.subjectPhotocatalysisen_US
dc.subjectWater splittingen_US
dc.titleInterface Engineering of MoS2-Modified Graphitic Carbon Nitride Nano-photocatalysts for an Efficient Hydrogen Evolution Reactionen_US
dc.typeArticleen_US
dc.collaborationUniversity of Creteen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/cplu.202000096en_US
dc.relation.issue7en_US
dc.relation.volume85en_US
cut.common.academicyear2019-2020en_US
dc.identifier.spage1379en_US
dc.identifier.epage1388en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2192-6506-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

16
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

16
Last Week
0
Last month
0
checked on Oct 13, 2023

Page view(s)

326
Last Week
4
Last month
8
checked on May 19, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons