Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/19250
DC FieldValueLanguage
dc.contributor.authorYang, Yang-
dc.contributor.authorBashir, Musa-
dc.contributor.authorWang, Jin-
dc.contributor.authorMichailides, Constantine-
dc.contributor.authorLoughney, Sean-
dc.contributor.authorArmin, Milad-
dc.contributor.authorHernández, Sergio-
dc.contributor.authorUrbano, Joaquín-
dc.contributor.authorLi, Chun-
dc.date.accessioned2020-10-22T09:59:53Z-
dc.date.available2020-10-22T09:59:53Z-
dc.date.issued2020-12-01-
dc.identifier.citationOcean Engineering, 2020, vol. 217, articl. no. 107909en_US
dc.identifier.issn00298018-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19250-
dc.description.abstractThis study investigates the wind-wave coupling effects on fatigue damage of tendons that connect multiple bodies of a novel floating platform (TELWIND) supporting a 10 MW wind turbine. An aero-hydro-servo tool is developed for dynamic analysis of a multi-body floating wind turbine (FWT) platform, by incorporating AeroDyn with AQWA through a user-defined dynamic library link (DLL) to conduct simulations of the FWT subjected to wind, wave and current loadings. The comparison against FAST has validated the accuracy of the AQWA-AeroDyn coupling framework in predicting coupled responses of the FWT. A specific site in the northern coast of Scotland is selected and design load cases are examined for the estimation of the fatigue damage of the tendons of the FWT. In the absence of wind-wave coupling, the motion differences between the two bodies of the platform are larger, leading to 43.7% enhancement in the tension fluctuation of tendons in average. Consequently, the fatigue damage of the tendons is significantly overestimated. Also, the investigation on the influence of effective simulation length on the fatigue damage shows that 90% accuracy can be achieved when 20% of the simulation analysis length is decreased.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofOcean Engineeringen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMulti-body platformen_US
dc.subjectFloating wind turbinesen_US
dc.subjectARCWINDen_US
dc.subjectAero-hydro-servo coupled methoden_US
dc.subjectFatigue analysisen_US
dc.subjectTendonsen_US
dc.titleWind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbineen_US
dc.typeArticleen_US
dc.collaborationLiverpool John Moores Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationESTEYCO SAen_US
dc.collaborationUniversity of Shanghai for Science and Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.countrySpainen_US
dc.countryChinaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.oceaneng.2020.107909en_US
dc.relation.volume217en_US
cut.common.academicyear2020-2021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypearticle-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2016-9079-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0029-8018-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

30
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

23
Last Week
0
Last month
0
checked on Sep 30, 2023

Page view(s)

289
Last Week
1
Last month
8
checked on May 21, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons