Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1513
DC FieldValueLanguage
dc.contributor.authorSonnet, Philippe-
dc.contributor.authorKelires, Pantelis C.-
dc.contributor.otherΚελίρης, Παντελής-
dc.date.accessioned2013-03-04T09:04:52Zen
dc.date.accessioned2013-05-17T05:22:48Z-
dc.date.accessioned2015-12-02T10:07:22Z-
dc.date.available2013-03-04T09:04:52Zen
dc.date.available2013-05-17T05:22:48Z-
dc.date.available2015-12-02T10:07:22Z-
dc.date.issued2002-11-07-
dc.identifier.citationPhysical Review B - Condensed Matter and Materials Physics, vol. 66, no. 20, pp. 2053071-2053076en_US
dc.identifier.issn10980121-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1513-
dc.description.abstractIntermixing in islands grown on semiconductor surfaces is an important effect, because it drastically alters the optoelectronic properties. Here, we demonstrate a direct simulational approach, based on the Monte Carlo method, which is able to extract with quantitative accuracy the composition profiles in quantum dots, and link them to the stress field. We apply this approach to Ge/Si pyramidal islands. We find that the profiles are not homogeneous, but show strong variations in both the lateral and vertical directions. Outstanding features, such as Si-rich rings in the island layers, are directly linked to the stress pattern. A limiting behavior of composition as a function of temperature and island size is predicted.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rights©The American Physical Society.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectGermaniumen_US
dc.subjectSiliconen_US
dc.subjectChemical analysisen_US
dc.subjectElectronicsen_US
dc.subjectMonte Carlo methoden_US
dc.subjectQuantum theoryen_US
dc.titleMonte Carlo studies of stress fields and intermixing in ge/si(100) quantum dotsen_US
dc.typeArticleen_US
dc.affiliationUniversity of Creteen
dc.collaborationUniversity of Creteen_US
dc.collaborationFoundation for Research & Technology-Hellas (F.O.R.T.H.)en_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1103/PhysRevB.66.205307en_US
dc.dept.handle123456789/54en
dc.relation.issue20en_US
dc.relation.volume66en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage2053071en_US
dc.identifier.epage2053076en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2469-9969-
crisitem.journal.publisherAmerican Physical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-0268-259X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

39
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

458
Last Week
4
Last month
12
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons