Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1466
DC FieldValueLanguage
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorKim, Youngkyoo-
dc.contributor.authorCook, Steffan-
dc.contributor.otherΧούλης, Στέλιος Α.-
dc.date.accessioned2013-03-06T16:32:45Zen
dc.date.accessioned2013-05-17T05:22:41Z-
dc.date.accessioned2015-12-02T10:05:44Z-
dc.date.available2013-03-06T16:32:45Zen
dc.date.available2013-05-17T05:22:41Z-
dc.date.available2015-12-02T10:05:44Z-
dc.date.issued2004-10-15-
dc.identifier.citationChemistry of materials, 2004, vol. 16, no. 23, pp. 4812-4818en_US
dc.identifier.issn15205002-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1466-
dc.description.abstractWe have fabricated organic photovoltaic devices with blends of regioregular poly(3-hexylthiophene) (P3HT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an electron donor and an electron acceptor, respectively. Several fabrication parameters such as blend composition, film thickness, solvent, and presence of LiF layer were varied in order to find the maximum device performance. The highest external quantum and power conversion efficiencies were achieved for the blend film with 60 wt % P3HT using p-xylene as a solvent. Insertion of a LiF layer further improved the power conversion efficiency from 0.02% to 0.13% under AM1.5 condition (1 Sun). To understand the relatively poor efficiency even in the optimized device, this polymer blend system was analyzed in relation to the following factors: charge separation efficiency, as measured by photoluminescence quantum efficiency; charge carrier mobility, measured by time-of-flight; and charge recombination dynamics, measured by transient absorption spectroscopy. The results showed that the electron mobility of F8BT is responsible mainly for the low efficiency in the presence of minor contribution of the charge separation efficiencyen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofChemistry of materialsen_US
dc.rights© American Chemical Societyen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectPhotoelectric cellsen_US
dc.subjectAbsorption spectroscopyen_US
dc.subjectPhotoluminescenceen_US
dc.subjectFilmen_US
dc.subjectQuantum chemistryen_US
dc.titleOrganic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole)en_US
dc.typeArticleen_US
dc.affiliationImperial College Londonen
dc.collaborationImperial College Londonen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationNon Peer Revieweden_US
dc.identifier.doi10.1021/cm049585cen_US
dc.dept.handle123456789/54en
dc.relation.issue23en_US
dc.relation.volume16en_US
cut.common.academicyear2004-2005en_US
dc.identifier.spage4812en_US
dc.identifier.epage4818en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1520-5002-
crisitem.journal.publisherAmerican Chemical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

237
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

223
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 5

597
Last Week
2
Last month
9
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons