Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1464
DC FieldValueLanguage
dc.contributor.authorMishra, Kailash C.-
dc.contributor.authorDuff, Kenneth J.-
dc.contributor.authorKelires, Pantelis C.-
dc.contributor.otherΚελίρης, Παντελής-
dc.date.accessioned2013-03-06T16:24:13Zen
dc.date.accessioned2013-05-17T05:22:41Z-
dc.date.accessioned2015-12-02T10:05:42Z-
dc.date.available2013-03-06T16:24:13Zen
dc.date.available2013-05-17T05:22:41Z-
dc.date.available2015-12-02T10:05:42Z-
dc.date.issued1986-
dc.identifier.citationPhysical Review B,1986, Volume 34, Issue 7, Pages 4529-4536en_US
dc.identifier.issn01631829-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1464-
dc.description.abstractThe hyperfine properties of Fe57m in the diatomic iron molecule have been analyzed using the self-consistent-field unrestricted Hartree-Fock procedure. The Fe57m quadrupole interaction and isomer shift strongly support g3 as the ground state for the Fe2 molecule, with g7 leading to less satisfactory agreement with experimental data but better than for other possible states. The analysis of the magnetic hyperfine-field tensor also appears to provide support for the g3 model through agreement with the evidence from Mössbauer studies that the direction of the maximum component is perpendicular to the internuclear axis, the direction of the maximum component of the electric-field-gradient tensor. The magnitudes of the hyperfine-field components are however underestimated by a factor of about 2 compared to experiment. Possible sources that could contribute to this departure are discussed.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rights© 1986 The American Physical Society.en_US
dc.subjectElectronicsen_US
dc.subjectIronen_US
dc.subjectDiatomic moleculesen_US
dc.titleDetermination of the electronic configuration of the ground state of iron dimer through analysis of fe57m mössbauer dataen_US
dc.typeArticleen_US
dc.affiliationUniversity of New York at Albanyen
dc.collaborationUniversity of Creteen_US
dc.subject.categoryPhysical Sciencesen_US
dc.countryGreeceen_US
dc.subject.fieldNatural Sciencesen_US
dc.identifier.doi10.1103/PhysRevB.34.4529en_US
dc.dept.handle123456789/54en
dc.relation.issue7en_US
dc.relation.volume34en_US
cut.common.academicyear1995-1996en_US
dc.identifier.spage4529en_US
dc.identifier.epage4536en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2469-9969-
crisitem.journal.publisherAmerican Physical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-0268-259X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s) 20

465
Last Week
0
Last month
4
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.