Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1431
DC FieldValueLanguage
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorRavichandran, K. S R-
dc.contributor.authorUlm, Franz Josef-
dc.contributor.otherΚωνσταντινίδης, Γιώργος-
dc.date.accessioned2013-03-08T13:54:28Zen
dc.date.accessioned2013-05-17T05:22:57Z-
dc.date.accessioned2015-12-02T10:13:07Z-
dc.date.available2013-03-08T13:54:28Zen
dc.date.available2013-05-17T05:22:57Z-
dc.date.available2015-12-02T10:13:07Z-
dc.date.issued2006-08-25-
dc.identifier.citationMaterials Science and Engineering A, 2006, vol. 430, no. 1-2, pp. 189-202en_US
dc.identifier.issn09215093-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1431-
dc.description.abstractSeveral composites comprise material phases that cannot be recapitulated ex situ, including calcium silicate hydrates in cementitous materials, hydroxyapatite in bone, and clay agglomerates in geomaterials. This requirement for in situ synthesis and characterization of chemically complex phases obviates conventional mechanical testing of large specimens representative of these material components. Current advances in experimental micro and nanomechanics have afforded new opportunities to explore and understand the effect of thermochemical environments on the microstructural and mechanical characteristics of naturally occurring material composites. Here, we propose a straightforward application of instrumented indentation to extract the in situ elastic properties of individual components and to image the connectivity among these phases in composites. This approach relies on a large array of nano to microscale contact experiments and the statistical analysis of the resulting data. Provided that the maximum indentation depth is chosen carefully, this method has the potential of extracting elastic properties of the indented phase which are minimally affected by the surrounding medium. An estimate of the limiting indentation depth is provided by asssuming a layered, thin film geometry. The proposed methodology is tested on a "model" composite material, a titanium-titanium monoboride (Ti-TiB) of various volumetric proportions. The elastic properties, volume fractions, and morphological arrangement of the two phases are recovered. These results demonstrate the information required for any micromechanical model that would predict composition-based mechanical performance of a given composite material.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofMaterials Science and Engineering: Aen_US
dc.rights@ Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectHydroxyapatiteen_US
dc.subjectMathematical modelsen_US
dc.subjectNanostructured materialsen_US
dc.subjectStatistical methodsen_US
dc.titleGrid indentation analysis of composite microstructure and mechanics: principles and validationen_US
dc.typeArticleen_US
dc.affiliationMassachusetts Institute of Technologyen
dc.collaborationMassachusetts Institute of Technologyen_US
dc.collaborationThe University of Utahen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.msea.2006.05.125en_US
dc.dept.handle123456789/54en
dc.relation.issue1-2en_US
dc.relation.volume430en_US
cut.common.academicyear2006-2007en_US
dc.identifier.spage189en_US
dc.identifier.epage202en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

501
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

434
Last Week
4
Last month
1
checked on Oct 29, 2023

Page view(s)

471
Last Week
1
Last month
9
checked on May 20, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons