Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14065
DC FieldValueLanguage
dc.contributor.authorCendra, Camila-
dc.contributor.authorGiovannitti, Alexander-
dc.contributor.authorSavva, Achilleas-
dc.contributor.authorVenkatraman, Vishak-
dc.contributor.authorMcCulloch, Iain-
dc.contributor.authorSalleo, Alberto-
dc.contributor.authorInal, Sahika-
dc.contributor.authorRivnay, Jonathan-
dc.date.accessioned2019-06-21T08:35:02Z-
dc.date.available2019-06-21T08:35:02Z-
dc.date.issued2019-02-01-
dc.identifier.citationAdvanced Functional Materials, 2019, vol. 29, no. 5en_US
dc.identifier.issn1616301X-
dc.description.abstractOrganic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium-ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte-mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.rights© WILEYen_US
dc.subjectBioelectronicsen_US
dc.subjectDopingen_US
dc.subjectOrganic mixed conductorsen_US
dc.subjectStructure–property relationshipsen_US
dc.titleRole of the Anion on the Transport and Structure of Organic Mixed Conductorsen_US
dc.typeArticleen_US
dc.collaborationNorthwestern Universityen_US
dc.collaborationStanford Universityen_US
dc.collaborationImperial College Londonen_US
dc.collaborationKing Abdullah University of Science and Technologyen_US
dc.collaborationNorthwestern Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryUnited Kingdomen_US
dc.countrySaudi Arabiaen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/adfm.201807034en_US
dc.identifier.scopus2-s2.0-85058852601-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85058852601-
dc.relation.issue5en_US
dc.relation.volume29en_US
cut.common.academicyear2018-2019en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1616-3028-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-6454-5788-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

115
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

102
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

365
Last Week
4
Last month
9
checked on May 17, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.