Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13657
DC FieldValueLanguage
dc.contributor.authorAllsop, Thomas P.-
dc.contributor.authorNeal, Ronald-
dc.contributor.authorKundrát, Vojtěch-
dc.contributor.authorWang, C.-
dc.contributor.authorMou, Chengbo-
dc.contributor.authorCulverhouse, Phil-
dc.contributor.authorAnia-Castanon, J. D.-
dc.contributor.authorKalli, Kyriacos-
dc.contributor.authorWebb, David J.-
dc.date.accessioned2019-05-17T15:10:50Z-
dc.date.available2019-05-17T15:10:50Z-
dc.date.issued2019-01-15-
dc.identifier.citationOptics Letters, 2019, vol. 44, no. 2, pp. 195-198en_US
dc.identifier.issn15394794-
dc.description.abstractWe investigate a nano-patterning process which creates reproducible periodic surface topological features that range in size from ∼100  μm to ∼20  μm. Specifically, we have fabricated multi-layered thin films consisting of germanium/silicon strata on a planar substrate, with each layer having nanometers thickness. The material processing exploits focused 244 nm ultra-violet laser light and an opto-mechanical setup typically applied to the inscription of fiber gratings, and is based upon the well-known material compaction interaction of ultra-violet light with germanium oxides. We show this process can be extended to create arrays of metal nano-antennas by adding a metal overlay to the thin film. This results in arrays with dimensions that span nanometer- to centimeter-length scales. Also, each nano-antenna consists of "nano-blocks." Experimental data are presented that show the UV irradiance dosage used to create these metal nanostructures on D-shaped optical fibers has a direct relationship to their transmission spectral characteristics as plasmonic devices.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofOptics Lettersen_US
dc.rights© Optical Society of Americaen_US
dc.subjectLaser materials processingen_US
dc.subjectOptical fiber fabricationen_US
dc.subjectOptical fibersen_US
dc.subjectPlasmonicsen_US
dc.titleLow-dimensional nano-patterned surface fabricated by direct-write UV-chemically induced geometric inscription techniqueen_US
dc.typeArticleen_US
dc.collaborationAston Universityen_US
dc.collaborationUniversity of Plymouthen_US
dc.collaborationShanghai Universityen_US
dc.collaborationInstituto de Óptica “Daza de Valdés”en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryChinaen_US
dc.countrySpainen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1364/OL.44.000195en_US
dc.relation.issue2en_US
dc.relation.volume44en_US
cut.common.academicyear2018-2019en_US
dc.identifier.spage195en_US
dc.identifier.epage198en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1539-4794-
crisitem.journal.publisherOptical Society of America(OSA)-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4541-092X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

294
Last Week
3
Last month
10
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.