Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13446
DC FieldValueLanguage
dc.contributor.authorVamvasakis, Ioannis-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorTzanoudakis, Theocharis-
dc.contributor.authorDrivas, Charalampos-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorKennou, Stella-
dc.contributor.authorArmatas, Gerasimos S.-
dc.date.accessioned2019-04-05T07:25:04Z-
dc.date.available2019-04-05T07:25:04Z-
dc.date.issued2018-09-07-
dc.identifier.citationACS Catalysis, 2018, vol. 8, no. 9, pp. 8726-8738en_US
dc.identifier.issn21555435-
dc.description.abstractPhotocatalytic water splitting for hydrogen production is an emerging and promising strategy for converting solar energy into chemical fuels. To that end, the development of robust and highly active semiconductor materials is of eminent importance in this field. Here, we demonstrate high-surface-area mesoporous networks comprising interconnected β-Ni(OH)2 modified CdS nanocrystals (NCs) as highly active and stable photocatalysts for hydrogen generation. Compared to single-component CdS assemblies, Ni-modified materials present a strong enhancement of photocatalytic performance for hydrogen evolution under visible light irradiation (λ ≥ 420 nm). By controlling the formation of β-Ni(OH)2 species, the mesoporous β-Ni(OH)2/CdS heterojunction networks at a 10 wt % Ni content reached an outstanding photocatalytic H2-evolution rate of 1.4 mmol h-1 at 20 °C (or ∼35 mmol g-1 h-1 mass activity), associated with an apparent quantum yield (QY) of 72% at 420 nm in a 5 M NaOH aqueous solution containing 10% v/v ethanol as sacrificial reagent. Mechanistic study with UV-vis/near-infrared, photoluminescence, and electrochemical impedance spectroscopy and photocatalytic performance evaluation reveals that the improved photocatalytic performance arises from the strong electronic coupling and charge-transferred states at the p-n β-Ni(OH)2/CdS heterojunctions. These β-Ni(OH)2 modified CdS mesoporous assemblies have important implications for renewable hydrogen generation technologies.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofACS Catalysisen_US
dc.rights© American Chemical Society.en_US
dc.subjectCadmium sulfideen_US
dc.subjectHeterojunctionsen_US
dc.subjectLighten_US
dc.subjectMesoporous materialsen_US
dc.subjectNickel compoundsen_US
dc.subjectHydrogen productionen_US
dc.titleVisible-Light Photocatalytic H2 Production Activity of β-Ni(OH)2-Modified CdS Mesoporous Nanoheterojunction Networksen_US
dc.typeArticleen_US
dc.collaborationUniversity of Creteen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/acscatal.8b01830en_US
dc.relation.issue9en_US
dc.relation.volume8en_US
cut.common.academicyear2018-2019en_US
dc.identifier.spage8726en_US
dc.identifier.epage8738en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2155-5435-
crisitem.journal.publisherAmerican Chemical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

90
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations 20

85
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

325
Last Week
2
Last month
11
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.