Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/11833
DC FieldValueLanguage
dc.contributor.authorTamiolakis, Ioannis-
dc.contributor.authorLiu, Dong-
dc.contributor.authorXiao, Fangxing-
dc.contributor.authorXie, Jian-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorSalim, Teddy-
dc.contributor.authorLiu, Bin-
dc.contributor.authorZhang, Qichun-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorArmatas, Gerasimos S.-
dc.date.accessioned2018-07-04T05:56:12Z-
dc.date.available2018-07-04T05:56:12Z-
dc.date.issued2018-11-15-
dc.identifier.citationApplied Catalysis B: Environmental, 2018, vol. 236, pp. 338-347en_US
dc.identifier.issn09263373-
dc.description.abstractBand edge engineering of semiconductor nanostructures is one of the most appealing approaches to enhance light absorption, carrier separation and, ultimately, solar to fuel conversion efficiency. In this study, we devise a facile polymer-assisted sol-gel chemical method to prepare highly porous, crystalline implanted SrTiO3 (STO) nanoparticles and demonstrate their performance for photocatalytic hydrogen generation from water. X-ray scattering, electron microscopy, and nitrogen physisorption data corroborate that the as-made catalysts comprise 100-nm-sized nanocuboid particles containing a highly internal porous structure (BET surface area ∼176 m2 g−1) with uniform mesopores (ca. 5.8 nm in diameter). Interestingly, a partial substitution of N and C for O is attained in STO lattice with this synthetic protocol, according to the elemental analysis, and infrared (IR) and X-ray photoelectron spectroscopy (XPS) studies. Compared to STO:C,N, the STO:C,N mesoporous decorated with Pt nanoparticles (ca. 3 nm) present unique attributes that allow for an impressive improvement of up to 74-fold in photocatalytic H2-production activity. By combining UV–vis/NIR optical absorption, photoluminescence, Raman and electrochemical impedance spectroscopy, we show that this improved performance arises from the unique nanostructure, which provides massive surface active sites, and the proper alignment of defect states and conduction band-edge position of the STO:C,N semiconductor with respect to the interband transitions of metal, which permit efficient plasmon-induced interfacial electron transfer between the Pt–STO:C,N junction.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Catalysis B: Environmentalen_US
dc.rights© Elsevier B.V.en_US
dc.subjectHydrogen productionen_US
dc.subjectMesoporous materialsen_US
dc.subjectNanoparticlesen_US
dc.subjectPhotocatalysisen_US
dc.subjectStrontium titanateen_US
dc.titleMesoporous implantable Pt/SrTiO3:C,N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transferen_US
dc.typeArticleen_US
dc.collaborationUniversity of Creteen_US
dc.collaborationNanyang Technological Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.countrySingaporeen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.apcatb.2018.05.036en_US
dc.relation.volume236en_US
cut.common.academicyear2018-2019en_US
dc.identifier.spage338en_US
dc.identifier.epage347en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn0926-3373-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

33
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

31
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

337
Last Week
0
Last month
7
checked on May 12, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.