Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/9824
Title: Content-based filtering for fast 3D reconstruction from unstructured web-based image data
Authors: Makantasis, Konstantinos 
Doulamis, Anastasios D. 
Doulamis, Nikolaos D. 
Ioannides, Marinos 
Matsatsinis, Nikolaos F. 
Keywords: 3D reconstruction
Content-based filtering
Image matching
Outliers’ removal
Issue Date: 2014
Publisher: Springer Verlag
Source: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 8740, 2014, Pages 91-101
Abstract: The huge amount of visual collections provides a unique opportunity for cultural heritage e-documentation and 3D reconstruction. The main difficulty, however, is its unstructured nature. In this paper a new content-based image filtering is proposed to discard image outliers that either confuse or significantly delay the 3D reconstruction process. The presented approach exploits a densebased unsupervised paradigm applied on multi-dimensional manifolds where images are represented as image points. The multidimensional scaling algorithm is adopted to relate the space of the image distances with the space of Gram matrices to compute the image coordinates. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards an affordable 3D reconstruction.
URI: http://ktisis.cut.ac.cy/handle/10488/9824
ISSN: 03029743
Rights: © Springer International Publishing Switzerland 2014.
Appears in Collections:Άρθρα/Articles

Show full item record

Page view(s) 50

24
Last Week
0
Last month
4
checked on Aug 24, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.