Please use this identifier to cite or link to this item:
Title: Promoting the assembly of carbon onions: An atomistic approach
Authors: Adhikari, Bibek 
Muthuraman, Balaji 
Mathioudakis, Christos 
Fyta, Maria G. 
Keywords: Atomistic simulations;Carbon;Electronic properties;Fullerenes;Molecular assembly
Category: Physical Sciences
Field: Natural Sciences
Issue Date: 1-Feb-2014
Publisher: Wiley-VCH Verlag
Source: Physica Status Solidi (A) Applications and Materials Science, 2014, Volume 211, Issue 2, Pages 277-287
metadata.dc.doi: 10.1002/pssa.201330082
Abstract: Atomistic simulations at two levels, classical and quantum-mechanical, are performed to probe the binding possibilities of the smallest multi-shelled concentric fullerenes, known as "carbon onions". We focus on the binding behavior of adjacent carbon onions and promote their binding through the addition of vacancies, as well as through doping with boron and nitrogen atoms. Molecular dynamics (MD) simulations are used to address the effect of different conditions of temperature and pressure on the binding of the onions and the thermal stability of the assembled structure. At a smaller scale, density-functional theory (DFT) based calculations reveal the electronic structure of the coalesced carbon onions, their charge density and frontier orbitals. The effect of van der Waals forces is also evaluated using a tight-binding scheme. Our main finding is that binding of adjacent carbon onions is promoted through the addition of vacancies and/or dopants on the outer surface of the carbon onions. The results are evaluated with respect to the relative distance between the adjacent carbon onions, the number of vacancies, and the amount or type of doping. We aim to optimize the conditions for assembling these nanoscale building blocks and understand their corresponding electronic properties in view of their potential in nano-assembling novel functional nanomaterials. (a) Two adjacent small carbon onions repel each other, while the carbon onions merge when tuning the external conditions and introducing vacancies on the structures as revealed from quantum mechanical (b) and classical simulations (c), respectively.
ISSN: 18626300
Rights: © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Page view(s) 50

Last Week
Last month
checked on Dec 15, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.