Please use this identifier to cite or link to this item:
Title: Hexagonal ice stability and growth in the presence of glyoxal and secondary organic aerosols
Authors: Daskalakis, Evangelos 
Hadjicharalambous, Marios 
Keywords: Molecular-dynamics simulations;Potential model;Carbon-dioxide;Scale factors;Ab-initio;Water;Nucleation;Surface;H2O;Crystallization
Category: Chemical Sciences
Field: Natural Sciences
Issue Date: 7-Sep-2014
Publisher: Royal Society of Chemistry
Source: Physical Chemistry Chemical Physics, 2014, Volume 16, Issue 33, Pages 17799-17810
metadata.dc.doi: 10.1039/c4cp02290d
Abstract: The presence of ice dominates the microphysics of formation of high altitude cirrus and polar stratospheric clouds, as well as the maturity of thunderstorms. We report on the hexagonal (1h) ice stability and growth in binary as well as multi-compound aerosols in atmospherically relevant conformations. The ubiquitous atmospheric trace gas glyoxal along with secondary organic aerosol (SOA) also in the presence of CO2 interacts with large ice 1h crystals of 1300-2000 water molecules. The crystals are subjected to phase transitions under superheating and supercooling conditions by Molecular Dynamics (MD) simulations. Density Functional Theory (DFT) based geometry optimization and vibrational frequency analysis are also employed for a smaller ice 1h cell of 12 water molecules. The interaction of the latter with each organic molecule reveals the extent of the mechanical stress exerted on the ordered ice structure. Full hydration of glyoxal promotes ice 1h stability and growth in wet aerosols, while partial hydration or full oxidation exerts a destabilizing effect on the ice 1h lattice. This behavior is associated with the ability of each organic phase to match the order of the ice 1h crystal. We propose that aqueous chemistry in wet aerosols may also have a strong effect on the microphysics of cloud formation.
ISSN: 14639076
Rights: © Partner Organisations 2014.
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Page view(s) 20

Last Week
Last month
checked on Feb 20, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.