Please use this identifier to cite or link to this item:
Title: Treatment of metalworking fluids using a submerged anaerobic membrane bioreactor (SAMBR)
Authors: Teli, Aronne 
Vyrides, Ioannis 
Stuckey, David C. 
Keywords: Anaerobic digestion;Bioreactors;Industrial effluents;Membranes;Metal working fluids (MWFs);Solid/liquid separation
Category: Biological Sciences
Field: Natural Sciences
Issue Date: 1-Mar-2015
Publisher: John Wiley and Sons Ltd
Source: Journal of Chemical Technology and Biotechnology, 2015, Volume 90, Issue 3, Pages 507-513
metadata.dc.doi: 10.1002/jctb.4339
Abstract: BACKGROUND: The role of biodegradation and physical-chemical mechanisms involved in the treatment of metal working fluids (MWFs) using a submerged anaerobic membrane bioreactor (SAMBR) was assessed in this research. Two SAMBRs were employed in series, with the second SAMBR being fed the permeate from the first bioreactor. RESULTS: Results showed a low biodegradability of the MWF both in batch tests (bioconversion efficiency≤3%), and operating the bioreactors continuously (bioconversion efficiency ∼0%). Among the physical-chemical removal mechanisms identified, it was found that bio-adhesion was the most important in MWF removal (removal rate of 96.0±1.64%), whereas membrane rejection was not significant (removal rate of 0.2±0.18%). However, it is expected that membrane separation will play an important role in removal after bio-adhesion has been saturated. CONCLUSION: The inhibition of the hydrolytic/heteroacetogenic biomass was the most problematic aspect in anaerobic digestion, resulting in the need for bioaugmentation of specific microorganisms to degrade MWFs. In the case of non-adaptation during long-term operation, the bio-adhesive propensity of MWFs could be used as a potential method for removing spent MWFs from wastewater streams.
ISSN: 02682575
Rights: © 2014 Society of Chemical Industry.
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Page view(s) 20

Last Week
Last month
checked on Feb 20, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.