Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/9506
Title: Localized surface plasmon fiber device coated with carbon nanotubes for the specific detection of CO2
Authors: Allsop, Thomas P. 
Arif, Raz N. 
Neal, Ron M. 
Kalli, Kyriacos 
Kundrát, Vojtěch 
Rozhin, A. G. 
Culverhouse, Phil 
Webb, David J. 
Keywords: Carbon nanotubes;Fiber optic sensors;Gas-sensing;Localized surface plasmons;Nanostructured thin film
Category: Nano-Technology
Field: Engineering and Technology
Issue Date: 1-Aug-2015
Publisher: SPIE
Source: Optical Sensing, Imaging, and Photon Counting; San Diego; United States; 11 August 2015 through 13 August 2015
metadata.dc.doi: 10.1117/12.2187557
Abstract: We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of /"n ∼-6200nm/RIU and "™/"n ∼5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments.
URI: http://ktisis.cut.ac.cy/handle/10488/9506
ISBN: 978-162841721-0
Rights: © SPIE
Type: Conference Papers
Appears in Collections:Δημοσιεύσεις σε συνέδρια/Conference papers

Show full item record

Page view(s) 50

31
Last Week
1
Last month
2
checked on Nov 24, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.