Please use this identifier to cite or link to this item:
Title: Localization and driving behavior classification with smartphone sensors in direct absence of global navigation satellite systems
Authors: Antoniou, Constantinos 
Gikas, Vassilis 
Papathanasopoulou, Vasileia 
Danezis, Chris 
Panagopoulos, Athanasios D. 
Markou, Ioulia 
Efthymiou, Dimitrios 
Yannis, George D. 
Perakis, Harris 
Keywords: Global navigation;Satellite systems;Smartphones;Transportation
Category: Civil Engineering;Civil Engineering
Field: Engineering and Technology
Issue Date: 1-Jan-2015
Publisher: National Research Council
Source: Transportation Research Record, 2015, Volume 2489, Pages 66-76
metadata.dc.doi: 10.3141/2489-08
Abstract: Global navigation satellite systems have tremendous impact and potential in the development of intelligent transportation systems and mobility services and are expected to deliver significant benefits, including increased capacity, improved safety, and decreased pollution. However, there are situations in which there might not be direct location information about vehicles, for example, in tunnels and in indoor facilities such as parking garages and commercial vehicle depots. Various technologies can be used for vehicle localization in these cases, and other sensors that are currently available in most modern smartphones, such as accelerometers and gyroscopes, can be used to obtain information directly about the driving patterns of individual drivers. The objective of this research is to present a framework for vehicle localization and modeling of driving behavior in indoor facilities or, more generally, facilities in which global navigation satellite system information is not available. Localization technologies and needs are surveyed and the adopted methodology is described. The case studies, which use data from multiple types of sensors (including accelerometers and gyroscopes from two smartphone platforms as well as two reference platforms), provide evidence that the opportunistic smartphone sensors can be useful in identifying obstacles (e.g., speed humps) and maneuvers (e.g., U-turns and sharp turns). These data, when crossreferenced with a digital map of the facility, can be useful in positioning the vehicles in indoor environments. At a more macroscopic level, a methodology is presented and applied to determine the optimal number of clusters for the drivers' behavior with a mix of suitable indexes.
ISSN: 03611981
Rights: Copyright © 2015 National Academy of Sciences. All rights reserved.
Type: Article
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat 
Danezis.pdf4.99 MBAdobe PDFView/Open
Show full item record

Page view(s) 50

Last Week
Last month
checked on Dec 15, 2018

Download(s) 5

checked on Dec 15, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.