Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/9382
Title: Adaptive calibration of an underwater robot vision system based on hemispherical optics
Authors: Constantinou, Christos C. 
Loizou, Savvas G. 
Georgiades, George P. 
Potyagaylo, Svetlana 
Skarlatos, Dimitrios 
Keywords: Cameras;Computer vision;Domes;Phase interfaces;Refractive index;Remotely operated vehicles
Category: Mechanical Engineering
Field: Engineering and Technology
Issue Date: 3-Mar-2015
Source: 2014 IEEE/OES Autonomous Underwater Vehicles, AUV 2014; Oxford; United States; 6 October 2014 through 9 October 2014
metadata.dc.doi: 10.1109/AUV.2014.7054402
Abstract: In this paper the issue of on-line adaptation of the robot vision system to variations in the refractive index of the ambient fluid is being considered. This is achieved by developing an analytical model of the light propagation through the AUV water-dome-air interface before entering the camera optics. The model developed is used for simulation of the AUV's camera dome. The effect of variations in the refractive index of the ambient fluid is investigated through experimental and simulation results. Based on this model, an appropriately designed stationary target is mounted on the AUV in the camera's FOV enabling adaptive estimation of the fluid refractive index. Experiments were carried out in and out of the water, thus changing the refractive index of the ambient fluid. Relations of the system's sensitivity to the camera resolution and the target geometry are investigated. The refractive index measurements obtained through the developed on-line adaptive estimator during the experiment, closely match the ones predicted by the model through the simulations. The experiments were performed using a commercially available ROV.
URI: http://ktisis.cut.ac.cy/handle/10488/9382
ISBN: 978-147994344-9
Rights: © 2014 IEEE.
Type: Conference Papers
Appears in Collections:Δημοσιεύσεις σε συνέδρια/Conference papers

Show full item record

Page view(s) 20

42
Last Week
1
Last month
8
checked on Nov 23, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.