Please use this identifier to cite or link to this item:
Title: A parallel computing approach to fast geostatistical areal interpolation
Authors: Guan, Qingfeng
Kyriakidis, Phaedon
Goodchild, Michael F.
Keywords: Parallel computing;Geostatistics;Fast Fourier transform;Kriging;Areal interpolation
Category: Environmental Engineering
Field: Engineering and Technology
Issue Date: Sep-2011
Publisher: Taylor & Francis, Ltd
Source: International Journal of Geographical Information Science, 2011, Volume 25, Issue 8, pages 1241–1267
Abstract: Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, that is, when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. (2005. Improving spatial data interoperability using geostatistical support-to-support interpolation. In: Proceedings of geoComputation. Ann Arbor, MI: University of Michigan) and Liu et al. (2006. Calculation of average covariance using fast Fourier transform (FFT). Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University) based on the fast Fourier transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time Zone and in the continental United States) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased and as the problem size increased
ISSN: 1365-8816
1362-3087 (Online)
DOI: 10.1080/13658816.2011.563744
Rights: Copyright © Taylor & Francis
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 10

checked on Nov 15, 2018

Citations 5

checked on Nov 15, 2018

Page view(s)

Last Week
Last month
checked on Nov 20, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.