Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/8576
Title: A novel corporate credit rating system based on Student’s-t hidden Markov models
Authors: Petropoulos, Anastasios 
Chatzis, Sotirios P. 
Xanthopoulos, Stylianos 
Keywords: Corporate credit rating;Hidden Markov model;Student’s-t distribution;Expectation maximization;Basel framework;Statistical machine learning
Category: Electrical Engineering - Electronic Engineering - Information Engineering
Field: Engineering and Technology
Issue Date: Jul-2016
Publisher: Elsevier Science Limited
Source: Expert Systems with Applications, 2016, Volume 53, Issue 1, pages 87-105
Link: http://www.sciencedirect.com/science/journal/09574174
Abstract: Corporate credit rating systems have been an integral part of expert decision making of financial institutions for the last four decades. They are embedded into the pricing function determining the interest rate of a loan contact, and play crucial role in the credit approval process. However, the currently employed intelligent systems are based on assumptions that completely ignore two key characteristics of financial data, namely their heavy-tailed actual distributions, and their time-series nature. These unrealistic assumptions definitely undermine the performance of the resulting corporate credit rating systems used to inform expert decisions. To address these shortcomings, in this work we propose a novel corporate credit rating system based on Student’s-t hidden Markov models (SHMMs), which are a well-established method for modeling heavy-tailed time-series data: Under our approach, we use a properly selected set of financial ratios to perform credit scoring, which we model via SHMMs. We evaluate our method using a dataset pertaining to Greek corporations and SMEs; this dataset includes five-year financial data, and delinquency behavioral information. We perform extensive comparisons of the credit risk assessments obtained from our method with other models commonly used by financial institutions. As we show, our proposed system yields significantly more reliable predictions, offering a valuable new intelligent system to bank experts, to assist their decision making.
URI: http://ktisis.cut.ac.cy/handle/10488/8576
ISSN: 0957-4174
1873-6793 (online)
DOI: http://dx.doi.org/10.1016/j.eswa.2016.01.015
Rights: Copyright © Elsevier
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 50

3
checked on Dec 17, 2017

Page view(s) 20

41
Last Week
2
Last month
4
checked on Dec 18, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.