Please use this identifier to cite or link to this item:
Title: Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells: part i - theory
Authors: Challagulla, Krishna S.
Kalamkarov, Alexander L.
Georgiades, Tasos 
Keywords: Micromechanics;Thermoplastics;Civil engineering;Metals
Category: Electrical Engineering,Wlectronic Engineering,Information Engineering
Field: Engineering and Technology
Issue Date: 2010
Publisher: Elsevier
Source: European Journal of Mechanics, A/Solids, 2010, Volume 29, Issue 4, Pages 530-540
Abstract: We develop in this paper a comprehensive micromechanical model for the analysis of thin smart composite grid-reinforced shells with an embedded periodic grid of generally orthotropic cylindrical reinforcements that may also exhibit piezoelectric properties. The original boundary value problem which characterizes the thermopiezoelastic behavior of the smart shell is decoupled via the asymptotic homogenization technique into three simpler problems the solution of which permits the determination of the effective elastic, piezoelectric and thermal expansion coefficients. The general orthotropy of the constituent materials is very important from the practical viewpoint and it renders the resulting analysis a lot more complicated. In Part II of this work the model is applied to the analysis of several practically important examples including cylindrical reinforced smart composite shells and multi-layer smart shells.
ISSN: 09977538
Rights: © 2010 Elsevier Masson SAS
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record


checked on Feb 13, 2018

Page view(s) 50

Last Week
Last month
checked on Feb 20, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.