Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/7358
Title: Optimum preventative maintenance strategies using genetic algorithms and Bayesian updating
Authors: Tantele, Elia 
Onoufriou, Toula 
Keywords: Genetic algorithms;Reinforced concrete;Concrete bridges
Category: Civil Engineering
Field: Engineering & Technology
Issue Date: 2009
Publisher: Taylor & Francis Group
Source: Ships and Offshore Structures, Volume 4, Issue 3, pages 299-306
Abstract: Preventative maintenance (PM) includes proactive maintenance actions that aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds because it can extend the life of bridges and avoid the need for unplanned essential maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed an optimisation methodology based on genetic algorithm (GA) principles, which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. To further improve the reliability of estimating the degree of deterioration of an element, which is a key element in predicting optimum PM strategies using the GA methodology, Bayesian updating is utilised. The use of Bayesian updating enables the updating of the probability of failure based on data from site inspection or laboratory experiments and the adjustment, if necessary, of the timing of subsequent PM interventions. For the case study presented in this paper, the probability of failure is expressed as the probability of corrosion initiation of a reinforced concrete element due to de-icing salt.
URI: http://ktisis.cut.ac.cy/handle/10488/7358
ISSN: 17445302
DOI: 10.1080/17445300903247162
Rights: © 2009 Taylor & Francis.
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 50

3
checked on Nov 16, 2017

Page view(s)

20
Last Week
1
Last month
2
checked on Nov 23, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.