Please use this identifier to cite or link to this item:
Title: A fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentation
Authors: Chatzis, Sotirios P. 
Varvarigou, Theodora 
Keywords: Fuzzy systems;Computing & Processing (Hardware/Software);Markov processes;Speech
Issue Date: 2008
Publisher: IEEE Xplore
Source: IEEE transactions on fuzzy systems, 2008, Volume 16, Issue 5, Pages 1351-1361
Abstract: Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c-means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applications
ISSN: 10636706
DOI: 10.1109/TFUZZ.2008.2005008
Rights: © 2008 IEEE
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 1

checked on May 1, 2018

Citations 1

Last Week
Last month
checked on Nov 10, 2018

Page view(s) 10

Last Week
Last month
checked on Nov 15, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.