Please use this identifier to cite or link to this item:
Title: Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributions
Authors: Chatzis, Sotirios P. 
Varvarigou, Theodora 
Chatzis, Sotirios P. 
Varvarigou, Theodora 
Keywords: Fuzzy systems;Factor analysis;Gaussian distribution;Expectation-maximization algorithms
Issue Date: 2009
Publisher: IEEE Xplore
Source: IEEE transactions on fuzzy systems, 2009, Volume 17, Issue 3, Pages 505-517
Abstract: Factor analysis is a latent subspace model commonly used for local dimensionality reduction tasks. Fuzzy c-means (FCM) type fuzzy clustering approaches are closely related to Gaussian mixture models (GMMs), and expectation - maximization (EM) like algorithms have been employed in fuzzy clustering with regularized objective functions. Student's t-mixture models (SMMs) have been proposed recently as an alternative to GMMs, resolving their outlier vulnerability problems. In this paper, we propose a novel FCM-type fuzzy clustering scheme providing two significant benefits when compared with the existing approaches. First, it provides a well-established observation space dimensionality reduction framework for fuzzy clustering algorithms based on factor analysis, allowing concurrent performance of fuzzy clustering and, within each cluster, local dimensionality reduction. Second, it exploits the outlier tolerance advantages of SMMs to provide a novel, soundly founded, nonheuristic, robust fuzzy clustering framework by introducing the effective means to incorporate the explicit assumption about Student's t-distributed data into the fuzzy clustering procedure. This way, the proposed model yields a significant performance increase for the fuzzy clustering algorithm, as we experimentally demonstrate
ISSN: 10636706
DOI: 10.1109/TFUZZ.2008.924317
Rights: © 2009 IEEE
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 5

checked on Nov 10, 2018

Citations 5

checked on Nov 7, 2018

Page view(s)

Last Week
Last month
checked on Nov 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.