Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/7228
Title: A sparse nonparametric hierarchical Bayesian approach towards inductive transfer for preference modeling
Authors: Chatzis, Sotirios P. 
Demiris, Yiannis 
Chatzis, Sotirios P. 
Demiris, Yiannis 
Keywords: Computer science;Artificial intelligence;Expert systems (Computer science);Knowledge management;Computer multitasking
Issue Date: 2012
Publisher: Elsevier
Source: Expert systems with applications, 2012, Volume 39, Issue 8, Pages 7235–7246
Abstract: In this paper, we present a novel methodology for preference learning based on the concept of inductive transfer. Specifically, we introduce a nonparametric hierarchical Bayesian multitask learning approach, based on the notion that human subjects may cluster together forming groups of individuals with similar preference rationale (but not identical preferences). Our approach is facilitated by the utilization of a Dirichlet process prior, which allows for the automatic inference of the most appropriate number of subject groups (clusters), as well as the employment of the automatic relevance determination (ARD) mechanism, giving rise to a sparse nature for our model, which significantly enhances its computational efficiency. We explore the efficacy of our novel approach by applying it to both a synthetic experiment and a real-world music recommendation application. As we show, our approach offers a significant enhancement in the effectiveness of knowledge transfer in statistical preference learning applications, being capable of correctly inferring the actual number of human subject groups in a modeled dataset, and limiting knowledge transfer only to subjects belonging to the same group (wherein knowledge transferability is more likely)
URI: http://ktisis.cut.ac.cy/handle/10488/7228
ISSN: 0957-4174
DOI: http://dx.doi.org/10.1016/j.eswa.2012.01.053
Rights: © 2011 Elsevier Ltd. All rights reserved
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 50

1
checked on Nov 16, 2017

Page view(s)

16
Last Week
0
Last month
0
checked on Nov 22, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.