Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/6676
Title: L1-optimal estimates for a regression type function in rd
Authors: Yatracos, Yannis G. 
Keywords: Regression analysis
Convergence
Issue Date: 1992
Publisher: Elsevier
Source: Journal of Multivariate Analysis, 1992, Volume 40, Issue 2, Pages 213-220
Abstract: Let X1, X2, ..., Xn be random vectors that take values in a compact set in Rd, d ≥ 1. Let Y1, Y2, ..., Yn be random variables ("the responses") which conditionally on X1 = x1, ..., Xn = xn are independent with densities f(y | xi, θ(xi)), i = 1, ..., n. Assuming that θ lives in a sup-norm compact space Θq,d of real valued functions, an optimal L1-consistent estimator θ ̇n of θ is constructed via empirical measures. The rate of convergence of the estimator to the true parameter θ depends on Kolmogorov's entropy of Θq,d.
URI: http://ktisis.cut.ac.cy/handle/10488/6676
ISSN: 0047259X
DOI: 10.1016/0047-259X(92)90023-9
Rights: © 1992 Elsevier B.V. All rights reserved.
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 50

3
checked on Feb 18, 2017

WEB OF SCIENCETM
Citations 20

3
checked on Jan 19, 2017

Page view(s) 50

9
checked on Mar 29, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.