Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/6672
Title: Minimum distance regression-type estimates with rates under weak dependence
Authors: Roussas, George G. 
Yatracos, Yannis G. 
Roussas, George G. 
Keywords: Regression analysis;Entropy;Estimation
Issue Date: 1996
Publisher: Springer Link
Source: Annals of the Institute of Statistical Mathematics, 1996, Volume 48, Issue 2, Pages 267-281
Abstract: Under weak dependence, a minimum distance estimate is obtained for a smooth function and its derivatives in a regression-type framework. The upper bound of the risk depends on the Kolmogorov entropy of the underlying space and the mixing coefficient. It is shown that the proposed estimates have the same rate of convergence, in the L 1-norm sense, as in the independent case.
URI: http://ktisis.cut.ac.cy/handle/10488/6672
ISSN: 0020-3157 (print)
1572-9052 (online)
DOI: 10.1007/BF00054790
Type: Article
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat 
10.1007_BF00054790.pdf660.92 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations 20

2
Last Week
0
Last month
checked on Oct 17, 2017

Page view(s)

27
Last Week
1
Last month
1
checked on Nov 22, 2017

Download(s) 50

8
checked on Nov 22, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.