Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/207
Title: Artificial neural networks used for the performance prediction of a thermosiphon solar water heater
Authors: Panteliou, Sofia 
Dentsoras, Argiris 
Kalogirou, Soteris A. 
Panteliou, Sofia 
Dentsoras, Argiris 
Keywords: Artificial Neural Networks (ANN)
Issue Date: 1999
Publisher: Elsevier B. V.
Source: Renewable Energy, Vol. 18, no. 1, 1999, pp. 87-99
Abstract: Artificial Neural Networks (ANN) are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant, are able to deal with non-linear problems, and once trained can perform prediction at high speed. ANNs have been used in diverse applications and they have shown to be particularly effective in system modelling as well as for system identification. The objective of this work is to train an artificial neural network (ANN) to learn to predict the performance of a thermosiphon solar domestic water heating system. This performance is measured in terms of the useful energy extracted and of the stored water temperature rise. An ANN has been trained using performance data for four types of systems, all employing the same collector panel under varying weather conditions. In this way the network was trained to accept and handle a number of unusual cases. The data presented as input were, the storage tank heat loss coefficient (U-value), the type of system (open or closed), the storage volume, and a total of fifty-four readings from real experiments of total daily solar radiation, total daily diffuse radiation, ambient air temperature, and the water temperature in storage tank at the beginning of the day. The network output is the useful energy extracted from the system and the water temperature rise. The statistical coefficient of multiple determination (R2-value) obtained for the training data set was equal to 0.9914 and 0.9808 for the two output parameters respectively. Both values are satisfactory because the closer R2-value is to unity the better is the mapping. Unknown data for all four systems were subsequently used to investigate the accuracy of prediction. These include performance data for the systems considered for the training of the network at different weather conditions. Predictions with maximum deviations of 1 MJ and 2.2°C were obtained respectively. Random data were also used both with the performance equations obtained from the experimental measurements and with the artificial neural network to predict the above two parameters. The predicted values thus obtained were very comparable. These results indicate that the proposed method can successfully be used for the estimation of the performance of the particular thermosiphon system at any of the different types of configuration used here. The greatest advantage of the present model is the capacity of the network to learn from examples and thus gradually improve its performance. This is done by embedding experimental knowledge in the network.
URI: http://ktisis.cut.ac.cy/handle/10488/207
ISSN: 0960-1481
DOI: 10.1016/S0960-1481(98)00787-3
Rights: Copyright © 1999 Elsevier Science B.V. All rights reserved.
Appears in Collections:Άρθρα/Articles

Show full item record

WEB OF SCIENCETM
Citations 5

55
Last Week
0
Last month
checked on Jun 12, 2017

Page view(s)

15
Last Week
0
Last month
1
checked on Jun 22, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.