Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/200
Title: Artificial neural networks in renewable energy systems applications:a review
Authors: Kalogirou, Soteris A. 
Keywords: Neural networks
Renewable energy systems
Issue Date: 2001
Publisher: Elsevier B. V.
Source: Renewable and Sustainable Energy Reviews,Vol. 5, no. 4, 2001, pp. 373-401
Abstract: Artificial neural networks are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems and, once trained, can perform prediction and generalisation at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimisation, signal processing and social/psychological sciences. They are particularly useful in system modelling such as in implementing complex mappings and system identification. This paper presents various applications of neural networks mainly in renewable energy problems in a thematic rather than a chronological or any other order. Artificial neural networks have been used by the author in the field of solar energy; for modelling and design of a solar steam generating plant, for the estimation of a parabolic trough collector intercept factor and local concentration ratio and for the modelling and performance prediction of solar water heating systems. They have also been used for the estimation of heating loads of buildings, for the prediction of air flow in a naturally ventilated test room and for the prediction of the energy consumption of a passive solar building. In all those models a multiple hidden layer architecture has been used. Errors reported in these models are well within acceptable limits, which clearly suggest that artificial neural networks can be used for modelling in other fields of renewable energy production and use. The work of other researchers in the field of renewable energy and other energy systems is also reported. This includes the use of artificial neural networks in solar radiation and wind speed prediction, photovoltaic systems, building services systems and load forecasting and prediction.
URI: http://ktisis.cut.ac.cy/handle/10488/200
ISSN: 1364-0321
DOI: 10.1016/S1364-0321(01)00006-5
Rights: Copyright © 2001 Elsevier Science Ltd. All rights reserved.
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 1

417
checked on Jun 17, 2017

WEB OF SCIENCETM
Citations 1

337
checked on Jul 20, 2017

Page view(s) 1

96
Last Week
8
Last month
20
checked on Jul 23, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.