Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/handle/10488/145
Title: Use of artificial intelligence for the optimal design of solar systems
Authors: Kalogirou, Soteris A. 
Kalogirou, Soteris A. 
Keywords: Artificial Neural Networks (ANN)
Genetic algorithms
Optimisation
Solar systems
Solar energy
Solar power
Artificial intelligence
Optimal design
Life cycle savings
Collector area
Issue Date: 2005
Publisher: Inderscience Enterprises
Source: International Journal of Computer Applications in Technology 2005 - Vol. 22, No.2/3 pp. 90 - 103
Abstract: The objective of this work is to use artificial intelligence methods for the optimal design of solar energy systems. The lifecycle savings of the system is used as the optimisation parameter. The variable parameters in this optimisation are the collector area, slope and mass flow rate and the volume of the storage tank. An artificial neural network is trained, using the results of a small number of simulations carried out with TRNSYS program, to learn the correlation of the above variable parameters on the auxiliary energy required by the system from which the lifecycle savings can be estimated. Subsequently, a genetic algorithm is employed to estimate the optimum size of the variable parameters, which maximises lifecycle savings. As an example, the optimisation of a large hot water system is presented. The optimum solution obtained from the present methodology is achieved very quickly as compared to the time required to obtain the same solution by the traditional trial and error method, which would require thousands of runs of TRNSYS to cover all possible combinations considered by the genetic algorithm.
URI: http://ktisis.cut.ac.cy/handle/10488/145
DOI: 10.1504/IJCAT.2005.006940
Rights: Copyright © 2004-2006 Inderscience Enterprises Limited. All rights reserved.
Appears in Collections:Άρθρα/Articles

Show full item record

SCOPUSTM   
Citations 50

3
checked on Jul 29, 2017

Page view(s)

17
Last Week
0
Last month
2
checked on Aug 21, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.