DSpace
 

Ktisis >
Ακαδημαϊκές Δημοσιεύσεις Μελών ΔΕΠ σε άλλα Ιδρύματα >
Κεφάλαια βιβλίων >

Please use this identifier to cite or link to this item: http://ktisis.cut.ac.cy/jspui/handle/10488/1258

Title: Fuzzy ART for Relatively Fast Unsupervised Image Color Quantization
Authors: Shorter, Nicholas
Kasparis, Takis
Keywords: Image Color Quantization
Fuzzy ART
Clustering
Unsupervised
Issue Date: 2008
Publisher: Springer Berlin / Heidelberg
Citation: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5342 LNCS, pp. 147-156
Abstract: The use of Fuzzy Adaptive Resonance Theory (FA) is explored for the unsupervised color quantization of a color image. The red, green and blue color component values of a given color image are passed as input instances into FA which then groups similar colors into the same class. The average of all of the colors in a given class then replaces the pixel values whose original colors belonged to that class. The FA unsupervised clustering is capable of realizing color quantization with competitive accuracy and arguably low computation time.
???metadata.dc.type.*???: Book chapter
ISBN: 9783540896883
ISSN: 0302-9743 (Print)
1611-3349 (Online)
???metadata.dc.doi???: http://dx.doi.org/10.1007/978-3-540-89689-0_19
???metadata.dc.rights???: © Springer
???metadata.dc.affiliation???: University of Central Florida
Appears in Collections:Κεφάλαια βιβλίων

Files in This Item:

There are no files associated with this item.

View Statistics

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2010  Duraspace - Feedback