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Abstract. Temporal data abstraction (TA) is a set of techniques aiming to abstract
time-points into higher-level interval concepts and to detect significant trends in
both low-level data and abstract concepts. Dynamic Bayesian networks (DBNs)
are temporal probabilistic graphical models that model temporal processes, tem-
poral relationships between events and state changes through time. In this paper,
we propose the integration of TA methods with DBNs in the context of medical
decision-support systems, by presenting an extended DBN model. More specifi-
cally, we demonstrate the derivation of temporal abstractions which are used for
building the network structure. We also apply machine learning algorithms to learn
the parameters of the model through data. The model is applied for diagnosis of
coronary heart disease using as testbed a longitudinal dataset. The classification
accuracy of our model evaluated using the evaluation metrics of Precision, Recall
and F1-score, shows the effectiveness of our proposed system.
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1. Introduction

Temporal abstraction (TA) and Dynamic Bayesian networks (DBNs) have been gaining
interest in the research community of medical-based systems. TA [1] is a knowledge-
based process which creates high-level concepts from raw data interpreted over time in-
tervals. The derived high-level abstract concepts have proved to be helpful in various
clinical tasks and domains such as therapy planning, the summarization and interpreta-
tion of patient records [2].

DBNs [3] have been proposed in the literature to incorporate the explicit or implicit
representation of time. They are the most widely used temporal extension of Bayesian
networks, which are graphical models representing explicitly probabilistic relationships
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among variables. DBNs are able to model stochastic processes in discrete time and they
utilize a representation of a dynamic process via a set of stochastic variables in a se-
quence of time slices. DBNs have many applications in medicine in tasks such as medi-
cal diagnosis, forecasting, and medical decision making [4, 5]. A detailed survey on TA
and DBN applied to medicine can be found in our recent work in [6].

In this paper, we present a novel approach of integrating TA techniques with DBNs.
Our recent review of the relevant literature [6] indicated that both these areas have been
largely used independently of each other in clinical domains. Our proposal is that they
could be effectively integrated in the context of medical decision-support systems. We
apply this integration in the medical domain of coronary heart disease (CHD) using as a
testbed the STULONG dataset 2. The proposed model, called ‘DBN-extended’ performs
a CHD diagnosis on a particular patient based on the patient’s medical history.

In particular, we use temporal abstraction methodologies to extract basic abstrac-
tions (i.e. state, single trend and persistence) using the finest possible granularity. The
finest granularity is the smallest time interval period during which the variable state value
remains the same and it can be acquired from experts’ knowledge and raw data. The
derived concepts are then used for DBN model development and deployment. Learning
parameters and inference algorithms are applied to the constructed model.

The paper is structured as follows. In Section 2, we provide an overview of our ap-
proach and our testbed dataset. The methodology of deriving the temporal basic abstrac-
tions is described in Section 3 and the proposed DBN-extended model is introduced in
Section 4. An extensive discussion of our experiments and experimental results is given
in Section 5, and we conclude in Section 6.

2. Overview

Our goal is to integrate temporal abstraction techniques with Dynamic Bayesian net-
works, thus the first step is to extend the DBN network so that its nodes represent basic
temporal abstractions. In order to evaluate the benefits of this integration, we developed
and deployed the extended model using as a benchmark dataset, the STULONG dataset
which was collected from a longitudinal study of coronary heart disease prevention. Ex-
amples of CHD events are: acute coronary syndrome, myocardial infarction, angina pec-
toris and ischemic heart disease. The target group includes 1428 men who may have had,
or not, a CHD event before the beginning of the study.

2.1. System Overview

Our approach consists of four main phases:

i) Data preprocessing and feature selection
ii) Derivation of basic temporal abstractions (state, trend and persistence TAs) from

raw data
iii) Construction of the ‘DBN-extended’ model and
iv) Evaluation of the model

2The data resource is on: http://euromise.vse.cz/challenge2004/ [Date accessed: 15 May 2014]
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The first main phase consists of the feature selection process and the selection of
the temporal range of observations. The selected time period is the total number of years
of observations based on which the temporal abstractions were generated and the total
number of time slices for the DBN were selected. We base our selection of features on
the domain knowledge that we acquired from a CHD expert. The selected features are
either direct or indirect risk factors (RFs) of CHD. Direct RFs include age, hyperten-
sion, cigarette smoking status (current smoker or not), dyslipidemia levels (such as Total
cholesterol/HDL ratio, LDL and triglycerides levels), obesity, diabetes and history fea-
tures (such as past personal history and family history). Indirect RFs include medicines
treating high cholesterol (taken or not), diet (if they follow any diet or not) and exercise
(if they regularly exercise or not).

The key problem for model construction is the choice of the total observation period
for all patients since it ranges from 1 to 24 years. In order to remove as few records as
possible from the dataset, the temporal range is chosen to be 24 years. For patients whose
total observation period is less than 24 years, the CHD event is considered unknown on
the years beyond their observation period. The patients’ health condition is assumed to
remain stable during any time period that their examination results are unknown either
because their total observation period is less than 24 years or they did not take any exam-
ination at the particular time period. The target group was reduced by removing records
of patients with less than three years of observations since in this study we are going to
focus on the temporal aspect of the data, utilizing the advantage of long-term observa-
tions. The final target group consists of 849 individuals from whom 254 had an event at
some point in time during their whole monitoring examination period.

3. Basic Temporal Abstractions

Temporal abstraction techniques are divided into two categories: basic and complex TAs.
In this study we are concerned with basic temporal abstractions techniques such as:
states, trend and persistence. One of the assumptions used in deriving temporal abstrac-
tions (state and trend) is that the abstraction value of a variable with missing raw values
at any time within the interval period, is defined to be the same as its last known value.
The same applies for cases when no record is defined during the required time interval.

3.1. State TAs

The state abstractions determine the state of an individual parameter over a particular
time period based on predefined categories. The state categories for the selected features
(variables) are defined by clinical experts rules. For example, poor-controlled and well-
controlled hypertension are state TAs of systolic and diastolic blood pressure values. The
hypertension variable is defined by the ‘poor-controlled’ state label if the patient has a
history of hypertension and his systolic or diastolic blood pressure levels are above the
standard limits; and by the ‘well-controlled’ state label when a patient has a history of
hypertension and his systolic or diastolic blood pressure levels are normal. Otherwise,
it is defined by the ‘no hypertension’ label. Dyslipidemia is a state TA of dyslipidemia
values. It is defined as ‘Present’ when a patient has any of the dyslipidemia values higher
than the standard limits and ‘Absent’ otherwise. State TAs for the Age variable are de-
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rived using three state categories labels: a) ‘Normal’ when the patient is under 50 years
old, b) ‘High’ when the patient is between 50 and 60 years old and c) ‘Very High’ when
the patient is over 60 years old. State TAs for the rest of the variables are derived in a
similar manner. All state TAs are displayed in Table 1.

Table 1. State TAs variables and their state values. Variable code is the variable name in the DBN model

Variable Variable Code Value=1 Value=2 Value=3

Smoking Smoking No Smoker Current Smoker
Cholesterol Medicines medCH Taken Not taken

Hypertension HT No Hypertension Well Controlled Poor
Controlled

Dyslipidemia Dislipidia Absent Present
Obesity Obesity Absent Present

Age AGE Normal High Very High
Diet DIET Following Diet Not Following Diet

Exercise Exercise Exercising Not Exercising

3.2. Trend TAs

Trend abstractions of a feature are generated by observing the changes between their
values. Examples of trend values are: decreasing, steady and increasing. In our approach,
trend abstractions of a variable are generated by comparing two or more consecutive
feature values (during the interval period of 3 years) as follows: taking into consideration
the trends of all the feature values of all the examinations during a particular time period
interval (3 years duration - 1-3 examinations), the most frequent trend value is selected
for the corresponding feature for that period. We have also used a combination of trends
and state abstractions in order to define the ratio of change of a particular variable based
on its state value. Trend abstraction values are:

• ‘Abnormal’ when the variable state value is abnormal and its trend ratio is in-
creasing or steady

• ‘AbnormalDecr’ when the variable state value is abnormal and its trend ratio is
decreasing

• ‘NormalInc’ when the variable state value is normal and its trend ratio is increas-
ing and

• ‘Normal’ when the variable state value is normal and its trend ratio is decreasing
or steady

The resulting trend abstractions are displayed in Table 2.

3.3. Persistence TAs

Persistence TA techniques derive maximal intervals for some property by applying per-
sistence rules both backwards and forwards in time from the specific time of the given
property. Such examples are Diabetes, Family History (FH) and the past personal history
of a patient for a CHD event (HistoryEvent). For example, when someone was diagnosed
with diabetes at time t, diabetes is present from time t and onwards. Similarly, when
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Table 2. Trend TAs variables and their trend values. Variable code is the variable name in the DBN model

Variable Name Variable Code Value = 1 Value = 2 Value = 3 Value =4

Total Cholesterol/HDL Ratio TCH/HDL Abnormal AbnormalDec NormalInc Normal
LDL LDL Abnormal AbnormalDec NormalInc Normal

Triglycerides TRIG Abnormal AbnormalDec NormalInc Normal
HDL HDL Increasing Steady Decreasing

Total Cholesterol TCH Increasing Steady Decreasing

someone was diagnosed with a CHD event at time t, he has a history of event from t+1
and onwards, thus the value of HistoryEvent variable is ‘Present’ from t + 1 until the
end of the monitoring process. The FH is an example of persistence TA for the whole
representation time period, since its value does not change through time. The resulted
persistence TAs are displayed in Table 3.

Table 3. Persistence TAs variables and their persistence values. Variable code is the variable name in the DBN
model

Variable Name Variable Code Value = 1 Value = 2

Diabetes Diabetes Present Absent
Past Personal History HistoryEvent Present Absent

Family History FH Present Absent

4. Constructing the Dynamic Bayesian Network

The construction of the extended Dynamic Bayesian network consists of two steps:
i)Building the network structure (qualitative part) and ii)Learning the parameters of the
network (quantitative part).

4.1. Network Structure

The network structure, as displayed in Figure 1, was designed by incorporating prior
information elicited from medical experts and medical literature. The derived basic tem-
poral abstractions described in Section 3 form the nodes (variables) of our DBN. The
DBN framework enables us to combine all the observations of a patient as evidence and
derive a probability for the hypothesis that the patient is diagnosed with a CHD, given
the total evidence gathered.

The model consists of 17 variables of which 15 are observed and two are hidden
(with unknown value). Hidden variables are the class variable CurrentEvent represent-
ing the diagnosis of a CHD event and the Dislipidia node. Both of these variables take
two values: ‘Present’ and ‘Absent’. Dislipidia is introduced as a common effect node of
TCH/HDL, LDL and triglycerides, which are direct risk factors to the class variable,
using the parent divorcing method in order to simplify the parameters estimation pro-
cess [7]. The variable FH is not repeated since it was modeled only as an initial condition
and it is not changing over time. It is therefore shown in the network of Figure 1, to be
outside the temporal plate. The arcs in the network are carriers of the causal and tem-
poral relationships among the variables. Intra-slice arcs represent the static relationships

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis 205



among variables within the same time-slice whereas inter-slice arcs connect nodes be-
tween different time slices to represent the changes over time among the variables. The
single digit numbers on the arcs denote the temporal delay of the influence of the cause
node to the effect. For example, an arc labeled as 1 between the variables History of CHD
(HistoryEvent) and itself denotes an influence that takes one time step which is reflected
to the next time slice. On the other hand, the arc without label connecting the CHD risk
factors (hypertension, obesity, etc.) to the CHD event, denotes a static influence at the
same time slice.

The first time slice in the network represents the time period starting from the pa-
tients’ entry examination and ending three years after their entry examination. This fixed
three-year granularity is chosen as it is the finer granularity, because DBNs are not able
to represent irregular time periods.

4.2. Learning Parameters

Having defined the structure of the network, we need to define the conditional proba-
bilities which quantify the arcs of the network. More specifically, we need to define the
prior probability for the root nodes such as: AGE, Diet, Exercise, Smoking and FH as
well as the conditional probability distributions for all non-root nodes. Each table gives
the conditional probability of a child node to be in each of its states (values), given all
possible parent state combinations. All of the parameters are learned from data using the
expectation maximization (EM) algorithm [8].

Once the network structure is defined and the network is quantified with the learned
conditional probability tables, the next step is to predict the probability of the class node
CurrentEvent. Each variable in the network is instantiated by the corresponding feature
value. The DBN is unrolled for eight time slices in order to represent the total observation
period (24 years) of all patients included in the training dataset. Then it performs infer-
ence and derives the belief in the class variable, i.e. the posterior probability of the class
at t to take on each of its values given the evidence (features) observed at the previous
time step t− 1 and at the current time-step.

Figure 1. The graphical structure of the developed DBN model displaying the nodes on one time slice and
temporal arcs representing the static or temporal relationships among variables.
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5. Experimental Results and Analysis

In this section, we present the experiments performed in order to apply our methodology
and evaluate the performance of our ‘DBN-extended’ model. For the evaluation of the
accuracy of our model, we divided the dataset into training and testing using the cross-
validation technique. The version of cross validation that we used in the experiments is 10
times 10-fold cross-validation, i.e. we averaged 10 runs of 10-fold cross-validation with
different 10 folds in each run [9]. The classification accuracy of the model is estimated
on t = 7 which is the last time slice.

5.1. Training in the Presence of Class Imbalance

One of the most important problems in the data mining field is to deal with imbalanced
datasets. The datasets present a class imbalance when there are many more examples of
one class (majority class) than of the other (minority class). It is usually the case that this
latter class, i.e. the unusual class, is the class of interest. Because this unusual class is
rare among the general population, the class distributions are very skewed.

In the current dataset, individuals who were not diagnosed with a CHD event at a
particular time period are many more than those who were diagnosed with a CHD event
(minority class). Most existing classification methods tend not to perform well on minor-
ity class examples when the dataset is extremely imbalanced. One approach to tackle the
problem of an imbalanced dataset is to use resampling to modify the datasets [10, 11].
This is achieved by either removing examples from the majority class (undersampling)
or adding more examples to the minority class (oversampling) or a combination of both.
In our system, we evaluate our classifier on two oversampling methods as well as on a
combination of oversampling with undersampling. More specifically, we apply the fol-
lowing resampling methods: a)SMOTE-N (Synthetic Minority Oversampling Technique
for nominal features) [12], which generates synthetic examples to be added to the minor-
ity class, b)random oversampling where minority cases are randomly chosen for dupli-
cation until the ratio of majority to minority reaches a desirable level and c)SMOTE-N
oversampling on the minority class with random undersampling the majority class.

We performed 4 experiments, based on resampling at various ratios. Table 4 shows
the number of patients records with a CHD event (‘Present’) at t = 7 and the number of
patients records without a CHD event (‘Absent’) in each of the 4 training data sets:

• Dataset D1 is the original dataset (no resampling)
• Dataset D2 is defined by random oversampling the minority class
• Dataset D3 is obtained via oversampling using SMOTE-N and finally
• Dataset D4 is derived using a combination of oversampling with SMOTE-N and

random undersampling.

We constructed four networks, one for each experiment. The networks had the same
structure but differed in their parameters, i.e. prior probabilities and the conditional prob-
ability tables. Each time a new training dataset was introduced, new network parameters
were derived using training on the new set. Throughout the remaining of the paper we
will refer to the four models as: D1, D2, D3 and D4. The models presented in this paper
were created and tested using the SMILE inference engine and GeNIe 3.

3A development environment for reasoning in graphical probabilistic models, available at:
http://genie.sis.pitt.edu/. [Date accessed: 15 May 2014]
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5.2. Testing the System

Two metrics that are commonly applied to imbalanced datasets to evaluate the perfor-
mance of the models is recall (Eq 1) and precision (Eq 2). These two metrics are summa-
rized into a third metric known as the F1 measure (Eq 3). The F1 measure is the combi-
nation of precision and recall which measures the effectiveness of classification in terms
of a ratio of the weighted importance of recall and precision. In the evaluation of the pro-
posed approach, both metrics are given equal importance. Recall and precision should be
close to each other, otherwise the F1 measure yields a value closer to the smaller of the
two. Applied to our problem, precision is the ratio of the number of patients who had a
CHD event at time t and are correctly classified, divided by the total number of patients
who are classified of having a CHD event at time t. Recall, on the other hand, is the ratio
of the number of patients who had a CHD event at time t and are correctly classified,
divided by the number of patients with an actual CHD event at t.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1score = 2× Precision×Recall

Precision+Recall
(3)

Table 4. Datasets used for four experiments with and without resampling

The values of recall, precision and F1-measure obtained from the evaluation of our
model for each of the four training datasets are given in Table 5. As expected, the per-
formance of the model without resampling (D1) is very low as this dataset is highly
imbalanced and the classifier is biased towards the majority class. By applying both the
random oversampling and SMOTE-N methods, we obtained dramatically improved re-
sults compared to D1. One risk with random oversampling, is overfitting due to placing
exact duplicates of minority examples from the original set and thus making the classifier
biased by remembering examples that were seen many times. The SMOTE-N technique
overcomes this risk by creating synthetic examples by interpolating pairs of the closest
neighbors in the minority class and introduces some new cases not included in the orig-
inal dataset. The dataset derived by applying SMOTE-N oversampling combined with
undersampling (D4) had the best classification performance. With this dataset, recall
reaches as high as 91% whereas precision reaches as high as 75% yielding a combined
F1-score of 82%.
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Table 5. The evaluation results for all the four training datasets

We also used Receiver Operating Characteristic (ROC) curves [13, 14] to show
graphically the classification performance of the four models. ROC displays graphically
the trade-off between true positive rate (TPR) and false positive rate (FPR) of a classifier.
TPR is the fraction of positive examples predicted correctly whereas FPR is the fraction
of negative examples predicted as positive. A point on the ROC curve represents the FPR
and TPR associated with the classification based on a given discrimination threshold.
The threshold refers to the cut-off value above which a record is classified as positive.
By varying the threshold we produce different points on the ROC curve (i.e. different
(FPR,TPR) pairs). A good classification model is located as close as possible to the upper
left corner of the diagram, i.e. point (TPR =1, FPR=0). The resulted graphs are displayed
in Figure 2.
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Figure 2. ROC curves t = 7 for all the four datasets.

6. Conclusions and Future Work

In this paper, we represented a new approach of integrating temporal abstraction with
Dynamic Bayesian networks in the context of coronary heart disease. The benefits of
applying our developed DBN-extended model to the CHD domain are that this exten-
sion can handle incomplete evidence in predicting disease outcomes and dealing with
uncertainty which are the most usual challenges in the domain of CHD.

During our training and evaluation stages we addressed the class imbalance prob-
lem on the dataset. We have used three techniques of resampling, random oversampling,
SMOTE-N and combination of SMOTE-N with undersampling to deal with the imbal-
ance problem and developed four models by training on four different datasets. The high
classification accuracy results proves the effectiveness of our proposed methodology.
Our recall and precision were reaching as high as 91% and 75% respectively by apply-
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ing SMOTE-N technique in combination with undersampling to the original dataset. The
classification results provide a promising direction for future work. The next step is to
apply the proposed approach for prognosis in the CHD domain. Estimating CHD risk
for future time periods (prognosis) can help clinicians provide treatment decisions to
patients that will prevent CHD events.

In addition, we are currently investigating the introduction of complex temporal ab-
stractions to the nodes of the DBN-extended model. Complex temporal abstractions de-
fine a combination of basic TAs and/or temporal patterns. Through their representation
into the DBN-extended model, we will also introduce the representation of new tempo-
ral dependencies between the variables (such as ‘meets’, ‘overlaps’ and ‘starts’)and the
representation of events occuring at irregular time periods into the time slices.
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