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ABSTRACT 

We generalize Batchelor’s parameterization of the autocorrelation functions of 

isotropic turbulence in a form involving a product expansion with multiple small 

scales. The richer small scale structure acquired this way, compared to the usual 

Batchelor function, is necessary so that the associated energy spectrum approximate 

well actual spectra in the universal equilibrium range. We propose that the 

generalized function provides an approximation of arbitrary accuracy for actual 

spectra of isotropic turbulence over the universal equilibrium range. The degree of 

accuracy depends on the number of higher moments which are determinable and it is 

reflected in the number of small scales involved. The energy spectrum of the 

generalized function is derived, and for the case of two small scales is compared with 

data from high-resolution direct numerical simulations. We show that the 

compensated spectra (which illustrate the bottleneck effect) and dissipation spectra 

are encapsulated excellently, in accordance with our proposal. 

Keywords: Isotropic turbulence spectrum, autocorrelations functions, Batchelor parameterization, 

bottleneck effect 

 

I. INTRODUCTION 

Decades ago, Batchelor [1] wrote down a simple formula for the second order 

structure function of the velocity field in isotropic turbulence. The formula 

incorporates the power series nature of the second order correlation functions in the 

small separations on the one hand and the Kolmogorov 2/3 law [2] in the inertial 

range on the other. The basic idea can be applied equally well to the longitudinal, 

transversal or three dimensional structure functions. In the relatively recent past, the 

spectrum associated with the longitudinal Batchelor structure function was calculated 

analytically [3][4]. The idea of using Batchelor interpolation has been applied, 

including also anomalous scaling, to the longitudinal structure functions, see e.g. [5-

9], mostly in association with the residual dependence of various quantities 

characterizing turbulence on the Reynolds number for large but finite values; also, to 

transversal structure functions, see e.g. [10-12], in association with the bottleneck 
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effect, illustrated by the characteristic bump in the graphs of the compensated 

spectrum [13], which is a standard feature of the Batchelor type of spectra.  

          The Batchelor function is entirely fixed by the total turbulent kinetic energy, the 

dissipation rate, the viscosity and the Kolmogorov constant C2 arising in the two-

thirds law. This means that the higher moments of the energy spectrum, such as the 

palinstrophy, are fixed in terms of these quantities. Dimensionless quantities depend 

solely on C2. That is, dimensionless characteristic numbers, such as the velocity 

derivative skewness or the position of the bottleneck bump peak in dimensionless 

wavenumbers, are entirely fixed in terms of C2. As we shall explicitly see below this 

is not consistent with the behavior of isotropic turbulent flows. Therefore those pre-

fixed higher moments restrict the applicability of Batchelor functions; for example, its 

energy spectrum cannot accommodate the characteristics of the bottleneck bump. 

These difficulties can be naturally and easily resolved by a simple generalization 

along the lines of construction of the original Batchelor function. This generalization 

is the subject of this work. 

II. BATCHELOR FUNCTIONS AND SPECTRA 

We start by introducing the original Batchelor function and deriving the associated 

energy spectrum. The longitudinal second order structure function is 2
1 2( ( ) ( ))l lu ur r , 

where lu  is the component of the velocity field in the direction of separation and over-

bar denotes a suitable average. The longitudinal (normalized) autocorrelation function 

f is defined by 2
1 2( ) ( ) ( )l lu u u f rr r  where r is the distance between the separation 

points and u
2
 is the average of 2

lu  i.e. the mean value of the square of the velocity in 

any specific direction. The dissipation rate ε can be expressed as 215 (0)u f     

where ν is the viscosity. 

          Using symmetry considerations it is easy to show that second order structure 

function and f are even functions of r and can be expressed as a power series around 

the origin r = 0; also the series contain alternating sign terms of r
2
. Adopting the 

Kolmogorov scaling we have that 2 2 3
1 2 2( ( ) ( )) ( )l lu u C r r r  when r is in the inertial 

range. That is, these functions become non-analytic at such distances and therefore 

they must have a finite radius of convergence when expressed as power series. 

          Guessing a form for f based on these conditions, a rather minimal choice is the 

Batchelor function [1] which we may write as 
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We shall work with the longitudinal functions throughout. θ is the power series radius 

of convergence mentioned above. The inertial range scaling arises at the infinity of 

the coordinate r/θ. This is already telling us that θ should probably be a dissipation 

range scale. The coefficient involving ε and ν is justified below. By its very 



construction, the function (1) claims validity in the entire universal equilibrium range 

but not outside of it. 

          The three-dimensional energy spectrum is given by (see e.g. [14]) 
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The function (1) contains no information about the large scales outside the inertial 

range. Hence, it does not claim carrying information about the smallest wave-

numbers. The integral (2) diverges in the large distances. We must then isolate those 

spurious ‘infrared’ divergences and throw them away. The first term in f i.e., the 

constant, introduces a Dirac delta function at k = 0. That can be thrown away. The rest 

can be taken care of by regularizing the integral through analytic continuation. 

          Using the definition of the Euler Gamma function we may write 
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where we have used a general exponent ζ in the place of the 2/3. The Batchelor 

function is essentially a continuous superposition of Gaussian ‘correlation functions’. 

Therefore the spectrum of the Batchelor function is a superposition of the spectra of 

those functions. One finds easily that 
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Setting now ζ = 2/3 and using standard integral expressions of the modified Bessel 

functions ( )K x one finds 
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This expression is equivalent to the one found in [3]. In the limit 0k  emerges the 

Kolmogorov 5/3 law and the length θ is fixed in terms of C2 and the Kolmogorov 

dissipation scale η=(ν
3
/ε)

1/4
:  
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The (exact) relation between the standard constants CK and C2 which emerges here is 

well known [14]. 

          The general expansion of the autocorrelation function f around r = 0 up to the 

fourth order reads 
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where P is the palinstrophy, the first higher moment of the spectrum. Expanding the 

function (1) one finds 
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That is, the palinstrophy is fixed in terms of ε, ν and C2. The same applies to all higher 

moments; in fact, their dimensionless forms are simply fixed by C2. Clearly this is too 

restrictive. For example, the value of P predicted by (8) is rather small and the derived 

spectrum has wrong behavior, as we shall explicitly discuss below. The Batchelor 

functions should be generalized in order to acquire more structure in the small scales. 

          Consider now the function 
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for N different lengths θi and exponents ζi. That is, the autocorrelation function is 

constructed via a product expansion. The good thing with a product expansion is that 

adding more factors increases the degree of approximation same as adding terms to a 

polynomial approximation, while simultaneously the negative exponents allow the 

function to ‘see’ much further than a polynomial approximation. Clearly, the number 

of factors are counted by the number of lengths θ, and we shall mostly use the number 

of θ’s to designate the order N of the product in (9). For positive ζi the function (9) 

possesses the same alternating sign structure of expression (1) as a power series 

around r = 0, which is necessary requirement (on both) in order to be consistent with 

the general expansion (7).  

          From a mathematical point of view, the θ’s and the ζ’s are the locations and the 

weights of the singularities (9) in the complex r-plane. From a physical point of view, 

the introduction of multiple dissipative scales θi reminds one of the fluctuating 

dissipative scale in the multi-fractal approaches to turbulence [15] or the cut-off 

dependent dissipative scale inherent in the renormalization group approach to 

turbulence [16]. Presumably, as we shall see, the number N of the factors in (9) is 

related to the resolution level of the direct numerical simulations of turbulence whose 

data one attempts to encode in (9) i.e. reflects a sort of a cut-off. The common theme 

of the mentioned general approaches to turbulence is that there is actually not a single 

dissipation scale. The scales θi, along with the ζi which control the weight of the θ’s in 

the product expansion of (9), essentially express that characteristic of turbulence. This 

is an intuitive way to think about the scales θi. More directly, they can be related to 

the moments of the energy spectrum, through generalizations of equation (8). Also, 

the spectra of the moments possess characteristics, such the position of their peaks, to 



which the θ’s may also be associated, although in a less direct mathematical manner. 

Throughout this work we shall think of the scales θ primarily as realizing information 

about the energy spectrum moments. 

          The function (9) reproduces the 2/3 law if ζ1+…+ζΝ = 2/3 and 
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which is a generalization of the last relation in (6). Clearly, if all θi are equal then the 

function (9) degenerates to the original Batchelor function (1). 

          In practice, the energy spectrum associated with (9) can be calculated 

numerically directly from the formula (2). One needs only to multiply the expression 

(9) with a regularizing factor which vanishes at infinity, via some large length scale. If 

the scale is chosen to be large enough then the spectrum is left practically unaffected 

for all wavenumbers of interest. On the other hand, we may give an expression for the 

spectrum. The following identity is useful (see e.g. [17]) 
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The domain of integration is the ( 1)N  -simplex defined by 1 1Nt t    and 0it  . 

The measure of integration tdV  is normalized so that 1tdV  . By this identity the 

product part of the function (9) reads 
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where 2 2 2
1 1( ) N Nt t t       . Formula (12) tells us that the non-trivial part of the 

generalized Batchelor function (9) is a superposition of the usual Batchelor functions, 

with a suitably defined length ( )t . That in turn means that the spectrum of the 

generalized Batchelor function is a superposition of the spectra of the usual Batchelor 

function (setting at this point 1 2 3N    ): 
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In the limit of small wave-numbers this spectrum takes the form (6) via the identity 

(11) and the condition (10) as it should. 

          We may digress at this point to note the following. The measure dVt in equation 

(11) defines a Dirichlet distribution (multivariate version of the beta distribution) over 

the simplex of the interpolation parameters ti. Equation (12) may then be interpreted 

as the expectation value of a (usual) Batchelor function with a t-dependent scale Θ(t) 

i.e., a continuous range of scales, which is defined through an interpolation between N 



scales θ lying at the edges of the simplex. Equation (13) for the spectrum may be 

interpreted in a similar way as the expectation value of a usual Batchelor spectrum. 

There is a certain affinity between these expressions and models of the velocity 

increment fluctuations in the multi-fractal approach (see e.g. [7][9][18]), due to the 

nature of the dissipation scale as a continuous variable over a continuous range, and 

the presence of a probability distribution for that variable scale. The difference is that 

the multi-fractal models are formed on the basis of the intermittency phenomenon and 

the associated anomalous scaling, while in the present case anomalous scaling is only 

a possibility. 

          In the limit of the large wave-numbers, the modified Bessel functions approach 

an exponential function. Let us denote the smallest and largest of the lengths θi by θmin 

and θmax respectively. Then min max( )t   . Then it is not difficult to show (using

1tdV  ) that the large k spectrum is bounded by 
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Equality is attained in the case of the single length θ i.e. in the case of the usual 

Batchelor function. Thus we obtain that the generalized Batchelor function spectrum 

maintains, as a matter of magnitude, the (exponential) (power law) asymptotics of 

the usual Batchelor spectrum (5). The estimate (14) makes sense as long as kθmin is 

large. This estimate would require refinement, and most possibly will be modified 

qualitatively, in the case of an infinite number of lengths θi such that they approach 

zero; the expressions (9) and (14) may very well make sense even in the case of an 

infinite number of lengths θ. For a finite number of θ one may verify numerically that 

the dominant behavior of the spectrum is exp(-kθmin) – modulo power law factor 

corrections – which is rather expected intuitively.  

          We may now explain our viewpoint, or better our conjecture, in regard to the 

generalized Batchelor function (9) based on the product expansion. By adopting an 

adequately large product in (9), which may even be infinite, we may approximate to 

an ever increasing degree of approximation any autocorrelation function of isotropic 

turbulence, or more precisely, any energy spectrum of isotropic turbulence in the 

universal range, and especially in the largest meaningful wavenumbers. That is, the 

increasing degree of approximation rests on the increasing number of the scales θ 

(and the associated exponent ζ). As the number of these scales increases, a greater 

number of higher moments of the spectrum (13) will agree with those of the actual 

spectrum one approximates. 

          Indeed, in this work we shall realize the last observation by taking into account 

the value of palinstrophy P of the spectrum, given in equation (7), which is the first 

higher moment of the spectrum. It is straightforward to show that the dimensionless 

palinstrophy associated with (9) reads 
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Also the condition (10) constrains the dimensionless lengths θi/η in terms of C2. 

Therefore if we work with a two-factor product in the function (9) i.e., N=2, knowing 

θi/η (and the exponents ζi) is equivalent to knowing C2 and the dimensionless 

palinstrophy. Similar formulas to (15) can be derived for all higher moments. We 

shall not need them in the present work. 

          Finally, it is worth to note that the generalized Batchelor spectrum (13), in its 

dimensionless form (ν
5
ε)

-1/4
E(k), depends solely on the quantities θi/η and kη. 

Therefore, the dimensionless Batchelor spectrum as a function of kη depends solely 

on the value of C2 and the values of a number of higher moments in dimensionless 

form in any given Reynolds number. That is, Reynolds-dependence enters the 

Batchelor spectrum (13) only through the Reynolds-dependence of these quantities. 

III. APPLICATIONS 

We apply these ideas to the results of the high-resolution direct numerical simulations 

(DNS) of turbulence [19][20][21]. In that set up, turbulence reaches a stationary state 

by being fed energy at the largest scales. When Reynolds number is not too small 

there is a regime of scales where turbulence can be regarded as isotropic. 

          Under these conditions the following relation may be derived   
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(see e.g. [5]) where is S the skewness of the velocity derivative distribution. This 

number is a highly important descriptive parameter of turbulence as, by (16), is 

related to information from the dissipation sub-range: for the cases we shall consider 

the palinstrophy spectrum k
4
E(k) peaks at kη≈0.5 i.e., depends on information from 

the small wavenumber end of the dissipation sub-range. Moreover, the shape, the 

peak and the position of the bottleneck bump [13] in the graph of the compensated 

spectrum
  

k
5/3

E(k) depends mainly on the interplay between the two numbers C2 (or 

CK) and S, at the given Reynolds number. This statement will be explicitly realized 

below. 

          Combining the equations (15) and (16) one finds 
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Let us first consider the case of a single scale θ i.e. the usual Batchelor function. 

Combining equation (17) with the last relation in (6) – and taking the single exponent 

ζ to be 2/3 – one finds |S|=(16/15)C2
-3/2

. Taking C2=2 we find |S|=0.38. This is too 

small. The data of [20][21] find |S| roughly in the range 0.52 – 0.6. A misshaped 



bottleneck bump is rather expected, according to our arguments above. Even worse, 

the result is too ‘rigid’. All higher moments are fixed in terms of C2. Now, the value 

of the C2 depends on the realization of the inertial sub-range at the given Reynolds 

number. Therefore C2 should not determine parameters which carry information about 

the dissipation sub-range; certainly, whatever is determined will be likely fixed at a 

wrong value. Hence the energy spectrum will be incorrect deeper in the dissipation 

sub-range. 

          Going to two θ’s we have more flexibility. We can give palinstrophy and 

skewness a much more acceptable value. The compensated spectrum k
5/3

E(k) as well 

as the dissipation spectrum k
2
E(k) can be now approximated well, as we shall see 

explicitly below. Palinstrophy and skewness will still be somewhat off their correct 

values, because with two θ’s the palinstrophy spectrum k
4
E(k) cannot be 

approximated well, that is, it will have a wrong shape and therefore wrong – although 

much less wrong – area under it. The reason for that, is the fact that moments higher 

than palinstrophy will still be predicted in terms of the C2 and S at the given Reynolds 

number (at some incorrect values).  Now, if the palinstrophy spectrum could be 

approximated well, then it turns out that the value of the next higher moment could 

not be as wrong as the predicted value (one may verify that by experimenting with 

simple model spectra). Therefore the palinstrophy spectrum k
4
E(k) cannot be 

approximated well, drawing also the value of the palinstrophy and skewness 

somewhat away from their correct values. (One should bear in mind, in the case of 

DNS spectra, ‘correct values’ for palinstrophy and skewness implies that there is 

enough resolution such that the errors are small. This means kmaxη at least 2). 

Improving that requires to go to three θ’s. Then the problem is transferred to the next 

higher moments. Proceeding this way one may restrict the inaccuracies of the 

Batchelor spectrum deeper in the dissipation range, as far as the available data allow.  

          The DNS spectra presented in reference [21] include Reynolds numbers in the 

neighborhood of a thousand. These spectra have been obtained with resolution 

kmaxη≈1, which is enough for our purposes. We will determine the generalized 

Batchelor spectrum which approximates these DNS spectra for the case of two θ’s. 

The free parameters of this function are the lengths θ1, θ2 and the associated 

exponents ζ1, ζ2. The exponents ζ are assumed to be constrained by the 2/3 law, 

ζ1+ζ2=2/3. One may note though that this is not really necessary: by equation (5), the 

usual Batchelor function spectrum (6) and therefore the generalized Batchelor 

function spectrum (13) can be very easily written for a general (anomalous) exponent 

in the inertial range. 

          Determining the free parameters entails a best fit procedure. To do this 

systematically and effectively one should set up a best algorithm either at the level of 

the spectrum, which is more straightforward but cumbersome, either at the level of the 

autocorrelation function, which is less straightforward but much faster. The 

systematic best fit procedure is presented in a forthcoming paper, where we 

investigate also the three θ’s case and show that it provides an excellent best fit of 

DNS spectra of the highest existing resolution (that is, the spectra of the higher 

moments are encapsulated with impressive accuracy).  



          In the present work we shall take a shortcut, which turns out to work rather 

well. We take the exponents to be equal, ζ1=ζ2=1/3, clearly assuming also the 2/3 law, 

so that there are two free parameters to be determined. Then we fiddle by hand the 

value of C2 and S in their expected intervals: C2 is looked for in the neighborhood and 

above the value of 2, while S is looked for in the neighborhood of the value given by 

the DNS data (Table 1) for each case, with the aim to bring the generalized Batchelor 

spectrum (13) as close as it is visibly possible to the respective DNS spectrum. This is 

done for the compensated spectrum k
5/3

E(k), in log-linear graphs. This is in 

accordance with our point of view regarding the nature of the Batchelor function: It is 

a model of the universal equilibrium range autocorrelation function, therefore the 

minimal requirement on it is to be able to approximate well the compensated 

(bottleneck) spectrum k
5/3

E(k), which gives also a good dissipation spectrum k
2
E(k) as 

a bonus. This essentially amounts to zooming at the energy spectrum E(k) in a 

particular interval of the wavenumbers; in particular, the left-most interval of the 

wavenumbers in the universal equilibrium range. Then, by adding more small scales θ 

one may proceed to improve the approximation of the energy spectrum E(k) deeper in 

the dissipation sub-range. Of course, when one works with a systematic best fit 

procedure what we described here arises automatically, and it is visible when looking 

in sequence the bottleneck spectrum k
5/3

E(k), the dissipation spectrum k
2
E(k), the 

palinstrophy spectrum k
4
E(k) and so on, in log-linear graphs. Presumably, the log-

linear graphs emphasize naturally the interval of wavenumbers which is most strongly 

associated with each particular moment spectrum. 

          The results of our endeavors, first in terms of numbers, are shown in Table 1.  

We consider four cases with quoted Taylor-Reynolds numbers in the range of 250 to 

1100. The value of C2 ranges from 2.00 at the highest Reynolds number to 2.15 for 

the lowest Reynolds number. This is a reasonable range as well as pattern. The inertial 

range is less and less well formed as we look at lower Reynolds numbers, and lies 

effectively higher in a compensated spectrum graph because it is drawn upwards by 

the bottleneck bump. The bottleneck is a strong characteristic and in some sense 

precedes the inertial sub-range: When we look at the compensated spectrum at low 

Reynolds numbers all we see is the bottleneck bump. This phenomenon, along with 

the forcing on the flow, obstructs the formation of a uniform inertial range. More 

importantly, whatever it is formed depends on the Reynolds number. Therefore the 

value of C2 (or equivalently, the value of CK) is a parameter running with the 

Reynolds number. The values of the skewness S were tuned by our best-fit-by-

inspection procedure very close to the values quoted in reference [20]. The mismatch 

observed is due to three factors. One reason is the inadequacies of the best fit 

procedure. Second, the order of generalized Batchelor function: as explained above, 

two θ’s cannot encapsulate the palinstrophy spectrum k
4
E(k), therefore the values of 

palinstrophy and skewness produced by the best fit are expected to be somewhat off 

the correct value in general. Third reason is the relatively low resolution of the DNS 

data, which means that the quoted values of the palinstrophy and skewness are 

affected by not negligible errors. In fact, the estimated and the quoted values for 

skewness could easily differ by 10 percent, as there is a difference of that order 



between the values for skewness from the DNS for kmaxη≈1 and kmaxη≈2 resolution 

level [20], that is, an error of that order in the DNS values of S quoted below. It is 

surprising – although most possibly incidental – that the overall relative differences 

are much smaller. 

 

DNS data Model data 

Reλ S C2 S θ1/η θ2/η 

257 0.52 2.15 0.52 22.25 8.230 

471 0.56 2.09 0.54 21.72 8.082 

732 0.58 2.05 0.57 21.76 7.836 

1131 0.60 2.00 0.61 21.78 7.542 

Table 1. DNS data and Batchelor function input parameters 

          On the other hand, the bottleneck and dissipation spectra are excellent; they are 

shown in Figure 1 and 2, respectively. In both graphs the continuous jagged lines are 

the DNS spectra, and the thick dotted lines are the corresponding generalized 

Batchelor function spectra, for the four cases listed in Table 1. The input parameters 

for the generalized function, that is, the pair of θ/η or equivalently the value of C2 and 

S, are quoted in the Table. The differences between the DNS and the generalized 

Batchelor spectra arise for wavenumbers on the left of the bottleneck peak where the 

DNS spectra exhibit their attempt to form an inertial sub-range (clearly shown in 

Figure 1) in the presence of forcing in a periodic box, and on the right-most part of the 

curves (in both Figures 1 and 2) i.e. the part of the spectrum that determines the shape 

of the palinstrophy spectrum k
4
E(k). The palinstrophy spectra are shown in Figure 3. 

As emphasized just above, this is the part of the DNS spectrum which we cannot 

accommodate with the two θ’s Batchelor function, while simultaneously we have 

reached the resolution limits of the DNS which can provide us only with an estimate 

of the value of the palinstrophy. We conclude that the two θ’s of the generalized 

Batchelor function is an adequate order of approximation for turbulence at the 

kmaxη≈1 resolution. 

          The thin dotted lines in Figures 1, 2 and 3 derive from the spectra associated to 

the usual (single θ) Batchelor function, constructed with the same values for C2 used 

for the generalized function (Table 1). This is especially clear in the graphs of Figure 

1, where the left-most part of the thick and thin dotted curves coincide. In the 

language of the usual Batchelor function these reasonable values of C2 translate to 

skewness 0.38 or less, as explained at the beginning of this section. This means that 

the palinstrophy is also small, causing the steeper downslope of the thin dotted curves 

in the Figures 1 and 2, and the smaller area under the curves of Figure 3. If, instead, 

we tried to tune skewness better, then two things would happen. First, the inertial sub-

range part of the curves in Figure 1 would be too low: in the range of values for the 

skewness given in Table 1, C2 would be smaller than 1.6 which corresponds to CK 

smaller than 1.2. Secondly, the bottleneck would be off position and at a different 

height. One could of course attempt a compromise between the two limits, or worse, 



attempt to zoom deeper in the large wave-numbers, trying to best fit the dissipation or 

the palinstrophy spectrum alone. But all that simply illustrates the fact that the single 

θ Batchelor function does not have enough small scale structure. We have shown that 

things improve considerably if we enrich that structure by one more scale, working 

with the two-factor form of the product expansion of (9).  More specifically, this way 

we are able to capture the characteristics of the compensated spectrum k
5/3

E(k) of an 

actual spectrum, and then start progressing to model that spectrum deeper towards the 

dissipation sub-range. That is, the energy spectrum of the Batchelor function is let to 

live in its natural habitat i.e. the universal equilibrium range as a whole. 

 

 

Figure 1. Compensated spectrum curves; continuous gray line: DNS data, thick dotted line: two θ’s 

Batchelor spectrum, thin dotted line: usual (single θ) Batchelor spectrum. 
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Figure 2. Dissipation spectrum curves; continuous gray line: DNS data, thick dotted line: two θ’s 

Batchelor spectrum, thin dotted line: usual (single θ) Batchelor spectrum.  

 

 
Figure 3. Palinstrophy spectrum curves; continuous gray line: DNS data, thick dotted line: two θ’s 

Batchelor spectrum, thin dotted line: usual (single θ) Batchelor spectrum. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.001 0.01 0.1 1

E
(k

)
k

2
η

2
(ν

5
ε)

-1
/4

Reλ=1131

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.001 0.01 0.1 1

Reλ=732

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.001 0.01 0.1 1

E
(k

)
k

2
η

2
(ν

5
ε)

-1
/4

kη

Reλ=471

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.001 0.01 0.1 1

kη

Reλ=257

0.0

0.1

0.2

0.01 0.1 1

E
(k

)
k

4
η

4
(ν

5
ε)

-1
/4

Reλ=1131

0.0

0.1

0.2

0.01 0.1 1

Reλ=732

0.0

0.1

0.2

0.01 0.1 1

E
(k

)
k

4
η

4
(ν

5
ε)

-1
/4

kη

Reλ=471

0.0

0.1

0.2

0.01 0.1 1

kη

Reλ=257



IV. DISCUSSION 

The generalized Batchelor function given by equation (9) is proposed as a model for 

the longitudinal autocorrelation function of isotropic turbulence in the universal 

equilibrium range. The degree of accuracy of the model is controlled by the number 

of factors in the product expansion of (9) i.e. in the number of small length scales θ. 

The conjecture is that a potentially infinite product could amount to the ‘exact’ result. 

In practice, and what matters most, is that the number of θ’s is related to the number 

of moments of a given actual spectrum which are known with sufficient accuracy. 

That is, it may be said somewhat loosely, the spectrum of the generalized Batchelor 

function is accurate to the degree the actual spectrum which is modelled is known 

accurately. [Interestingly, one may note that there is an affinity between this behavior 

and characteristics of the renormalization group approach to turbulence [16]: the fixed 

resolution level encoded in a (generalized) Batchelor spectrum is an analogue of the 

cut-off scale in that approach, while the association of the resolution level with the 

number of θ and the value of the higher moments is an analogue and the running scale 

dependence of the physical quantities in the same approach.] We applied these ideas 

to high-resolution direct numerical simulations (DNS) of turbulence [19][20][21] 

which include the highest Reynolds number DNS flows achieved. We used the two 

θ’s case of the generalized function, in consistency with the degree of accuracy of the 

DNS spectra, for which the only higher moment determined with decent accuracy is 

palinstrophy. The result is that the compensated (bottleneck) spectra k
5/3

E(k) and the 

dissipation spectra k
2
E(k) of the DNS are captured very well, while the palinstrophy 

DNS spectrum k
4
E(k) may only be partially captured, as it is ill determined due to the 

DNS resolution limits. Specific application of generalized Batchelor functions with 

larger product expansions, such as that of three θ’s, is the subject of work under 

preparation. Using DNS data of large Reynolds numbers less than the maximum 

available one may test the conjecture that at the three θ’s product expansion the 

palinstrophy spectrum will be captured very well. In fact, preliminary investigations 

show that even the next higher moment spectrum is modelled very nicely. This 

supports our point of view that the Batchelor function, in its full proposed form, is 

sufficient to model isotropic turbulent flows in their universal equilibrium range, 

modulo effects related to the setup of the flows, such as forcing. 
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